Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultrathin, highly flexible and stretchable PLEDs

Abstract

We demonstrate ultrathin (2 µm thick) red and orange polymer light-emitting diodes with unprecedented mechanical properties in terms of their flexibility and ability to be stretched. The devices have a luminance greater than 100 cd m–2, sufficient for a variety of optoelectronic applications including indoor displays. They can be operated as free-standing ultrathin films, allowing for crumpling during device operation. Furthermore, they may be applied to almost any surface whether rigid or elastomeric, and can withstand the associated mechanical deformation. They are shown to be extremely flexible, with radii of curvature under 10 µm, and stretch-compatible to 100% tensile strain. Such ultrathin light-emitting foils constitute an important step towards integration with malleable materials like textiles and artificial skin.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Electrical and optical characterization of ultrathin PLEDs.
Figure 2: Demonstrations of extreme deformation attainable with ultrathin PLEDs.
Figure 3: Wrinkling and folding of PLED films during compression.

References

  1. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 1603–1607 (2010).

    Article  ADS  Google Scholar 

  2. Kim, D. H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 1–7 (2010).

    Article  Google Scholar 

  3. Kim, D. H. et al. Ultrathin silicon circuits with strain-isolation layers and mesh layouts for high-performance electronics on fabric, vinyl, leather, and paper. Adv. Mater. 21, 3703–3707 (2009).

    Article  Google Scholar 

  4. Timko, B. P. et al. Electrical recording from hearts with flexible nanowire device arrays. Nano Lett. 9, 914–918 (2009).

    Article  ADS  Google Scholar 

  5. Jung, I., Shin, G., Malyarchuk, V., Ha, J. S. & Rogers, J. A. Paraboloid electronic eye cameras using deformable arrays of photodetectors in hexagonal mesh layouts. Appl. Phys. Lett. 96, 021110 (2010).

    Article  ADS  Google Scholar 

  6. Jung, I. et al. Dynamically tunable hemispherical electronic eye camera system with adjustable zoom capability. Proc. Natl Acad. Sci. USA 108, 1788–1793 (2011).

    Article  ADS  Google Scholar 

  7. Sekitani, T. & Someya, T. Stretchable, large-area organic electronics. Adv. Mater. 22, 2228–2246 (2010).

    Article  Google Scholar 

  8. Cherenack, K., van Os, K. & van Pieterson, L. Smart photonic textiles begin to weave their magic. Laser Focus World 63–66 (April 2012).

  9. Sekitani, T. et al. Stretchable active-matrix organic light-emitting diode display using printable elastic conductors. Nature Mater. 8, 494–499 (2009).

    Article  ADS  Google Scholar 

  10. Gray, D. S., Tien, J. & Chen, C. S. High-conductivity elastomeric electronics. Adv. Mater. 16, 393–397 (2004).

    Article  Google Scholar 

  11. Kim, K. S. et al. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 457, 706–710 (2008).

    Article  ADS  Google Scholar 

  12. Sekitani, T. et al. A rubberlike stretchable active matrix using elastic conductors. Science 321, 1468–1472 (2008).

    Article  ADS  Google Scholar 

  13. Lacour, S. P., Wagner, S., Huang, Z. & Suo, Z. Stretchable gold conductors on elastomeric substrates. Appl. Phys. Lett. 82, 2404–2406 (2003).

    Article  ADS  Google Scholar 

  14. Khang, D. Y., Jiang, H., Huang, Y. & Rogers, J. A. A stretchable form of single-crystal silicon for high-performance electronics on rubber substrates. Science 331, 208–212 (2006).

    Article  ADS  Google Scholar 

  15. Kim, D. H. et al. Stretchable and foldable silicon integrated circuits. Science 320, 507–511 (2008).

    Article  ADS  Google Scholar 

  16. Wagner, S. & Bauer, S. Materials for stretchable electronics. MRS Bull. 37, 207–213 (2012).

    Article  Google Scholar 

  17. Egbe, D. A. M. et al. Improvement in carrier mobility and photovoltaic performance through random distribution of segments of linear and branched side chains. Mater. Chem. 20, 9726–9734 (2010).

    Article  Google Scholar 

  18. Camaioni, N. et al. Electron and hole transport in an anthracene-based conjugated polymer. Appl. Phys. Lett. 101, 053302 (2012).

    Article  ADS  Google Scholar 

  19. Usluer, Ö. et al. Charge carrier mobility, photovoltaic and electroluminescent properties of anthracene-based conjugated polymers bearing randomly distributed side chains. J. Polym. Sci. Polym. Chem. 50, 3425–3436 (2012).

    Article  Google Scholar 

  20. Sierros, K. A., Morris, N. J., Ramji, K. & Cairns, D. R. Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices. Thin Solid Films 517, 2590–2595 (2009).

    Article  ADS  Google Scholar 

  21. Fortunato, E., Ginley, D., Hosono, H. & Paine, D. C. Transparent conducting oxides for photovoltaics. MRS Bull. 32, 242–247 (2007).

    Article  Google Scholar 

  22. Hekmatshoar, B. et al. Reliability of active-matrix organic light-emitting-diode arrays with amorphous silicon thin-film transistor backplanes on clear plastic. IEEE Electron. Device Lett. 29, 63–66 (2008).

    Article  ADS  Google Scholar 

  23. Steudel, S. et al. Design and realization of a flexible QQVGA AMOLED display with organic TFTs. Org. Electron. 13, 1729–1735 (2012).

    Article  Google Scholar 

  24. Rowell, M. W. et al. Organic solar cells with carbon nanotube network electrodes. Appl. Phys. Lett. 88, 233506 (2006).

    Article  ADS  Google Scholar 

  25. Yu, Z., Niu, X., Liu, Z. & Pei, Q. Intrinsically stretchable polymer light-emitting devices using carbon nanotube–polymer composite electrodes. Adv. Mater. 33, 3989–3994 (2011).

    Article  Google Scholar 

  26. Kaltenbrunner, M. et al. Ultrathin and lightweight organic solar cells with high flexibility. Nat. Commun. 3, 770 (2012).

    Article  ADS  Google Scholar 

  27. Lee, J. et al. Stretchable GaAs photovoltaics with designs that enable high areal coverage. Adv. Mater. 23, 986–991 (2011).

    Article  Google Scholar 

  28. Lipomi, D. J., Tee, B. C. K., Vosgueritchian, M. & Bao, Z. Stretchable organic solar cells. Adv. Mater. 23, 1771–1775 (2011).

    Article  Google Scholar 

  29. Wang, X., Hu, H., Shen, Y., Zhou, X. & Zheng, Z. Stretchable conductors with ultrahigh tensile strain and stable metallic conductance enabled by prestrained polyelectrolyte nanoplatforms. Adv. Mater. 23, 3090–3094 (2011).

    Article  Google Scholar 

  30. Graz, I. M., Cotton, D. P. J. & Lacour, S. P. Extended cyclic uniaxial loading of stretchable gold thin-films on elastomeric substrates. Appl. Phys. Lett. 94, 071902 (2009).

    Article  ADS  Google Scholar 

  31. Lipomi, D. J. & Bao, Z. Stretchable, elastic materials and devices for solar energy conversion. Energy Environ. Sci. 4, 3314–3328 (2011).

    Article  Google Scholar 

  32. Kim, T. I. et al. High-efficiency, microscale GaN light-emitting diodes and their thermal properties on unusual substrates. Small 8, 1643–1649 (2012).

    Article  Google Scholar 

  33. Kim, T. I., Kim, R. H. & Rogers, J. A. Microscale inorganic light-emitting diodes on flexible and stretchable substrates. IEEE Photon. J. 4, 607–612 (2012).

    Article  ADS  Google Scholar 

  34. Kim, H. et al. Unusual strategies for using indium gallium nitride grown on silicon (111) for solid-state lighting. Proc. Natl Acad. Sci. USA 108, 10072–10077 (2011).

    Article  ADS  Google Scholar 

  35. Kim, R. H. et al. Materials and designs for wirelessly powered implantable light-emitting systems. Small 8, 2812–2818 (2012).

    Article  Google Scholar 

  36. Hu, X. et al. Stretchable inorganic semiconductor electronic systems. Adv. Mater. 23, 2933–2936 (2011).

    Article  Google Scholar 

  37. Kim, P., Abkarian, M. & Stone, H. A. Hierarchical folding of elastic membranes under biaxial compressive stress. Nature Mater. 10, 952–957 (2011).

    Article  ADS  Google Scholar 

  38. Kim, J. B. et al. Wrinkles and deep folds as photonic structures in photovoltaics. Nature Photon. 6, 327–332 (2012).

    Article  ADS  Google Scholar 

  39. Zang, J., Zhao, X., Cao, Y. & Hutchinson, J. W. Localized ridge wrinkling of stiff films on compliant substrates. J. Mech. Phys. Solids 60, 1265–1279 (2012).

    Article  ADS  Google Scholar 

  40. Ebata, Y., Croll, A. B. & Crosby, A. J. Wrinkling and strain localizations in polymer thin films. Soft Matter 8, 9086–9091 (2012).

    Article  ADS  Google Scholar 

  41. Gregg, B. A. & van de Lagemaat, J. Solar cells: folding photons. Nature Photon. 6, 278–280 (2012).

    Article  ADS  Google Scholar 

  42. Heeger, A. J., Sariciftci, N. S. & Namdas, E. B. Semiconducting and Metallic Polymers 167–168 (Oxford Univ. Press, 2010).

    Google Scholar 

Download references

Acknowledgements

The authors thank Pütz GmbH & Co. Folien KG for the ultrathin substrates. This work was partially funded by the ERC Advanced Investigators Grant ‘SoftMap’ and the JST–ERATO Someya Bio-Harmonized Electronics grant. The authors are grateful to the Austrian FWF for financial support through the Wittgenstein Award. N.S.S. and M.S.W. acknowledge financial support from the J-RISE (JST) Yamagata University–Johannes Kepler University collaboration. D.A.M.E. and C.U. acknowledge the Deutsche Forschungsgemeinschaft (DFG) for financial support in the framework of SPP 1355. S.A. acknowledges support from the African Network for Solar Energy (ANSOLE) for enabling her stay at LIOS under the framework of the ANEX-Program. The authors thank J. Reeder, P. Stadler and P. Denk for their contributions.

Author information

Authors and Affiliations

Authors

Contributions

D.A.M.E. and C.U. conceived and synthesized the light-emitting polymer. M.S.W., M.K., E.D.G., K.G. and S.A. fabricated and characterized devices. G.K., K.G. and I.G. processed ultrathin substrates and assisted with device demonstrations. M.S.W., M.K. and S.B. wrote the manuscript and prepared figures, with contributions from all authors. M.C.M. and Z.M. performed the quantitative mechanical analysis. Ta.S., Ts.S., M.C.S., S.B. and N.S.S. supervised the project and advised on device optimization.

Corresponding author

Correspondence to Matthew S. White.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1639 kb)

Supplementary Movie

Supplementary Movie 1 (MOV 5677 kb)

Supplementary Movie

Supplementary Movie 2 (MOV 2264 kb)

Supplementary Movie

Supplementary Movie 3 (MOV 4526 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

White, M., Kaltenbrunner, M., Głowacki, E. et al. Ultrathin, highly flexible and stretchable PLEDs. Nature Photon 7, 811–816 (2013). https://doi.org/10.1038/nphoton.2013.188

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.188

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing