Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Realization of an all-dielectric zero-index optical metamaterial

Abstract

Metamaterials offer unprecedented flexibility for manipulating the optical properties of matter, including the ability to access negative index1,2,3,4, ultrahigh index5 and chiral optical properties6,7,8. Recently, metamaterials with near-zero refractive index have attracted much attention9,10,11,12,13. Light inside such materials experiences no spatial phase change and extremely large phase velocity, properties that can be applied for realizing directional emission14,15,16, tunnelling waveguides17, large-area single-mode devices18 and electromagnetic cloaks19. However, at optical frequencies, the previously demonstrated zero- or negative-refractive-index metamaterials have required the use of metallic inclusions, leading to large ohmic loss, a serious impediment to device applications20,21. Here, we experimentally demonstrate an impedance-matched zero-index metamaterial at optical frequencies based on purely dielectric constituents. Formed from stacked silicon-rod unit cells, the metamaterial has a nearly isotropic low-index response for transverse-magnetic polarized light, leading to angular selectivity of transmission and directive emission from quantum dots placed within the material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram and images of fabricated ZIM structure.
Figure 2: Optical properties of bulk ZIM.
Figure 3: Optical properties and transmittance of fabricated ZIM.
Figure 4: Angular selectivity of transmission.
Figure 5: Directional quantum dot emission from within the ZIM.

Similar content being viewed by others

References

  1. Shelby, R. A., Smith, D. R. & Schultz, S. Experimental verification of a negative index of refraction. Science 292, 77–79 (2001).

    Article  ADS  Google Scholar 

  2. Zhang, S. et al. Experimental demonstration of near-infrared negative-index metamaterials. Phys. Rev. Lett. 95, 137404 (2005).

    Article  ADS  Google Scholar 

  3. Shalaev, V. M. et al. Negative index of refraction in optical metamaterials. Opt. Lett. 30, 3356–3358 (2005).

    Article  ADS  Google Scholar 

  4. Valentine, J. et al. Three-dimensional optical metamaterial with a negative refractive index. Nature 455, 376–379 (2008).

    Article  ADS  Google Scholar 

  5. Choi, M. et al. A terahertz metamaterial with unnaturally high refractive index. Nature 470, 369–373 (2011).

    Article  ADS  Google Scholar 

  6. Decker, M., Klein, M. W., Wegener, M. & Linden, S. Circular dichroism of planar chiral magnetic metamaterials. Opt. Lett. 32, 856–858 (2007).

    Article  ADS  Google Scholar 

  7. Plum, E., Fedotov, V. A., Schwanecke, A. S., Zheludev, N. I. & Chen, Y. Giant optical gyrotropy due to electromagnetic coupling. Appl. Phys. Lett. 90, 223113 (2007).

    Article  ADS  Google Scholar 

  8. Zhang, S. et al. Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009).

    Article  ADS  Google Scholar 

  9. Liu, R. et al. Experimental demonstration of electromagnetic tunneling through an epsilon-near-zero metamaterial at microwave frequencies. Phys. Rev. Lett. 100, 023903 (2008).

    Article  ADS  Google Scholar 

  10. Huang, X., Lai, Y., Hang, Z. H., Zheng, H. & Chan, C. T. Dirac cones induced by accidental degeneracy in photonic crystals and zero-refractive-index materials. Nature Mater. 10, 582–586 (2011).

    Article  ADS  Google Scholar 

  11. Yun, S. et al. Low-loss impedance-matched optical metamaterials with zero-phase delay. ACS Nano 6, 4475–4482 (2012).

    Article  Google Scholar 

  12. Vesseur, E., Coenen, T., Caglayan, H., Engheta, N. & Polman, A. Experimental verification of n = 0 structures for visible light. Phys. Rev. Lett. 110, 013902 (2013).

    Article  ADS  Google Scholar 

  13. Adams, D. et al. Funneling light through a subwavelength aperture with epsilon-near-zero materials. Phys. Rev. Lett. 107, 133901 (2011).

    Article  ADS  Google Scholar 

  14. Enoch, S., Tayeb, G., Sabouroux, P., Guérin, N. & Vincent, P. A metamaterial for directive emission. Phys. Rev. Lett. 89, 213902 (2002).

    Article  ADS  Google Scholar 

  15. Ziolkowski, R. Propagation in and scattering from a matched metamaterial having a zero index of refraction. Phys. Rev. E 70, 046608 (2004).

    Article  ADS  Google Scholar 

  16. Alù, A. Silveirinha, M., Salandrino, A. & Engheta, N. Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B 75, 155410 (2007).

    Article  ADS  Google Scholar 

  17. Silveirinha, M. & Engheta, N. Tunneling of electromagnetic energy through subwavelength channels and bends using ɛ-near-zero materials. Phys. Rev. Lett. 97, 157403 (2006).

    Article  ADS  Google Scholar 

  18. Bravo-Abad, J., Joannopoulos, J. D. & Soljačić, M. Enabling single-mode behavior over large areas with photonic Dirac cones. Proc. Natl Acad. Sci. USA 109, 9761–9765 (2012).

    Article  ADS  Google Scholar 

  19. Hao, J., Yan, W. & Qiu, M. Super-reflection and cloaking based on zero index metamaterial. Appl. Phys. Lett. 96, 101109 (2010).

    Article  ADS  Google Scholar 

  20. Boltasseva, A. & Atwater, H. A. Low-loss plasmonic metamaterials. Science 331, 290–291 (2011).

    Article  ADS  Google Scholar 

  21. Soukoulis, C. M. & Wegener, M. Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nature Photon. 5, 523–530 (2011).

    Article  ADS  Google Scholar 

  22. Lewin, L. The electrical constants of a material loaded with spherical particles. Proc. Inst. Elec. Eng. Part 3 94, 65–68 (1947).

    Google Scholar 

  23. O'Brien, S. & Pendry, J. B. Photonic band-gap effects and magnetic activity in dielectric composites. J. Phys. Condens. Matter 14, 4035–4044 (2002).

    Article  ADS  Google Scholar 

  24. Zhao, Q., Zhou, J., Zhang, F. & Lippens, D. Mie resonance-based dielectric metamaterials. Mater. Today 12, 60–69 (2009).

    Article  Google Scholar 

  25. Zhao, Q. et al. Experimental demonstration of isotropic negative permeability in a three-dimensional dielectric composite. Phys. Rev. Lett. 101, 027402 (2008).

    Article  ADS  Google Scholar 

  26. Kuznetsov, A. I., Miroshnichenko, A. E., Fu, Y. H., Zhang, J. & Luk'yanchuk, B. Magnetic light. Sci. Rep. 2, 492 (2012).

    Article  ADS  Google Scholar 

  27. Shi, L., Tuzer, T. U., Fenollosa, R. & Meseguer, F. A new dielectric metamaterial building block with a strong magnetic response in the sub-1.5-micrometer region: silicon colloid nanocavities. Adv. Mater. 24, 5934–5938 (2012).

    Article  Google Scholar 

  28. Peng, L. et al. Experimental observation of left-handed behavior in an array of standard dielectric resonators. Phys. Rev. Lett. 98, 157403 (2007).

    Article  ADS  Google Scholar 

  29. Popa, B-I. & Cummer, S. Compact dielectric particles as a building block for low-loss magnetic metamaterials. Phys. Rev. Lett. 100, 207401 (2008).

    Article  ADS  Google Scholar 

  30. Ginn, J. et al. Realizing optical magnetism from dielectric metamaterials. Phys. Rev. Lett. 108, 097402 (2012).

    Article  ADS  Google Scholar 

  31. Novoselov, K. S. et al. Two-dimensional gas of massless Dirac fermions in graphene. Nature 438, 197–200 (2005).

    Article  ADS  Google Scholar 

  32. Tsukerman, I. Effective parameters of metamaterials: a rigorous homogenization theory via Whitney interpolation. J. Opt. Soc. Am. B 28, 577–586 (2011).

    Article  ADS  Google Scholar 

  33. Wu, Y., Li, J., Zhang, Z-Q. & Chan, C. Effective medium theory for magnetodielectric composites: beyond the long-wavelength limit. Phys. Rev. B 74, 085111 (2006).

    Article  ADS  Google Scholar 

  34. Chen, X., Grzegorczyk, T. & Wu, B. Robust method to retrieve the constitutive effective parameters of metamaterials. Phys. Rev. E 70, 016608 (2004).

    Article  ADS  Google Scholar 

  35. Smith, D. R., Vier, D. C., Koschny, T. & Soukoulis, C. M. Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys. Rev. E 71, 036617 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was funded by the Office of Naval Research (programmes N00014-11-1-0521 and N00014-12-1-0571) and the United States–Israel Binational Science Foundation (programme 2010460). A portion of this research was conducted at the Center for Nanophase Materials Sciences, which is sponsored at Oak Ridge National Laboratory by the Scientific User Facilities Division, Office of Basic Energy Sciences, US Department of Energy. The authors thank N. Lavrik for discussions regarding RIE processing.

Author information

Authors and Affiliations

Authors

Contributions

P.M. fabricated the metamaterials and both P.M. and Y.Y. conducted the numerical simulations and experimental characterization. Z.A. assisted in measuring transmission as a function of incident angle. I.I.K. assisted in developing the electron-beam lithography and RIE processes and D.P.B. performed the low-pressure chemical vapour deposition. The idea was developed by J.V., who assisted in all aspects of the work and supervised the project. All authors discussed the results and contributed to writing the manuscript.

Corresponding author

Correspondence to Jason Valentine.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1196 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moitra, P., Yang, Y., Anderson, Z. et al. Realization of an all-dielectric zero-index optical metamaterial. Nature Photon 7, 791–795 (2013). https://doi.org/10.1038/nphoton.2013.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2013.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing