Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

Optically induced 'negative forces'

Abstract

The idea of using optical beams to attract objects has long been a dream of scientists and the public alike. Over the years, a number of proposals have attempted to bring this concept to life. Here we review the most recent progress in this emerging field, including new concepts for manipulating small objects using optically induced 'negative forces', achieved by tailoring the properties of the electromagnetic field, the environment or the particles themselves.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Tailoring the environment.
Figure 3: Tailoring interactions with other objects.
Figure 4: Tailoring the properties of the object.

Similar content being viewed by others

References

  1. Maxwell, J. C. A Treatise on Electricity and Magnetism 1st edn, 391 (Oxford Univ. Press, 1873).

    MATH  Google Scholar 

  2. Lebedev, P. Untersuchungen über die druckkräfte des lichtes. Ann. Phys. 6, 433–458 (1901).

    Article  Google Scholar 

  3. Nichols, E. F. & Hull, G. F. A preliminary communication on the pressure of heat and light radiation. Phys. Rev. 13, 307–320 (1901).

    ADS  Google Scholar 

  4. Ashkin, A. Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156–159 (1970).

    Article  ADS  Google Scholar 

  5. Kantrowitz, A. Propulsion to orbit by ground-based lasers. Astronaut. Aeronaut. 10, 74–76 (1972).

    Google Scholar 

  6. Sinko, J. E. Laser ablation propulsion tractor beam system. J. Propul. Power 26, 189–191 (2010).

    Article  Google Scholar 

  7. Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. & Chu, S. Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288–290 (1986).

    Article  ADS  Google Scholar 

  8. Block, S. M. Making light work with optical tweezers. Nature 360, 493–495 (1992).

    Article  ADS  Google Scholar 

  9. A light touch. Nature Photon 5, 315 (2011).

  10. Grier, D. A revolution in optical manipulation. Nature 424, 21–27 (2003).

    Article  ADS  Google Scholar 

  11. Cizmár, T., Kollárová, V., Bouchal, Z. & Zemánek, P. Sub-micron particle organization by self-imaging of non-diffracting beams. New J. Phys. 8, 43 (2006).

    Article  ADS  Google Scholar 

  12. Ruffner, D. B. & Grier, D. G. Optical conveyors: a class of active tractor beams. Phys. Rev. Lett. 109, 163903 (2012).

    Article  ADS  Google Scholar 

  13. Maher-McWilliams, C., Douglas, P. & Barker, P. F. Laser-driven acceleration of neutral particles. Nature Photon. 6, 386–390 (2012).

    Article  ADS  Google Scholar 

  14. Veselago, V. G. Electrodynamics of substances with simultaneously negative values of electric and magnetic permeabilities. Sov. Phys. Usp. 10, 509–514 (1968).

    Article  ADS  Google Scholar 

  15. Kemp, B. A., Kong, J. A. & Grzegorczyk, T. M. Reversal of wave momentum in isotropic left-handed media. Phys. Rev. A 75, 053810 (2007).

    Article  ADS  Google Scholar 

  16. Yannopapas, V. & Galiatsatos, P. G. Electromagnetic forces in negative-refractive-index metamaterials: a first-principles study. Phys. Rev. A 77, 043819 (2008).

    Article  ADS  Google Scholar 

  17. Veselago, V. G. Energy, linear momentum and mass transfer by an electromagnetic wave in a negative-refraction medium. Phys. Usp. 52, 649–654 (2009).

    Article  ADS  Google Scholar 

  18. Chau, K. J. & Lezec, H. C. Revisiting the Balazs thought experiment in the case of a left-handed material: electromagnetic-pulse-induced displacement of a dispersive, dissipative negative-index slab. Opt. Express 20, 10138–10162 (2012).

    Article  ADS  Google Scholar 

  19. Mansuripur, M. & Zakharian, A. R. Radiation pressure and photon momentum in negative-index media. Proc. SPIE 8455, 845511 (2012).

    Article  Google Scholar 

  20. Salandrino A. & Christodoulides, D. N. Reverse optical forces in negative index dielectric waveguide arrays. Opt. Lett. 36, 3103–3105 (2011).

    Article  ADS  Google Scholar 

  21. Nemirovsky, J., Rechtsman, M. C. & Segev, M. Negative radiation pressure and negative effective refractive index via dielectric birefringence. Opt. Express 20, 8907–8914 (2012).

    Article  ADS  Google Scholar 

  22. Iida, T. & Ishihara, H. Theory of resonant radiation force exerted on nanostructures by optical excitation of their quantum states: from microscopic to macroscopic descriptions. Phys. Rev. B 77, 245319 (2008).

    Article  ADS  Google Scholar 

  23. Gómez-Medina, R. & Sáenz, J. J. Unusually strong optical interactions between particles in quasi-one-dimensional geometries. Phys. Rev. Lett. 93, 243602 (2004).

    Article  ADS  Google Scholar 

  24. Shalin, A. S. & Sukhov, S. V. Plasmonic nanostructures as accelerators for nanoparticles: optical nanocannon. Plasmonics http://dx.doi.org/10.1007/s11468-012-9447-0 (2012).

  25. Gel'mukhanov, F. Kh. 'Negative' optical pressure. Sov. J. Quant. Electron. 11, 1138–1141 (1981).

    Article  ADS  Google Scholar 

  26. Werij, H. G. C., Woerdman, J. P., Beenakker, J. J. M. & Kuščer, I. Demonstration of a semipermeable optical piston. Phys. Rev. Lett. 52, 2237–2240 (1984).

    Article  ADS  Google Scholar 

  27. Monjushiro, H., Takeuchi, K. & Watarai, H. Anomalous laser photophoretic behavior of photo-absorbing organic droplets in water. Chem. Lett. 31, 788–789 (2002).

    Article  Google Scholar 

  28. Desyatnikov, A. S., Shvedov, V. G., Rode, A. V., Krolikowski, W. & Kivshar, Y. S. Photophoretic manipulation of absorbing aerosol particles with vortex beams: theory versus experiment. Opt. Express 17, 8201–8211 (2009).

    Article  ADS  Google Scholar 

  29. Shvedov, V. G. et. al. Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).

    Article  ADS  Google Scholar 

  30. Jannasch, A., Demirörs, F., van Oostrum, P., van Blaaderen, A. & Schäffer, E. Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nature Photon. 6, 469–473 (2012).

    Article  ADS  Google Scholar 

  31. Nieto-Vesperinas, M., Gómez-Medina, R. & Sáenz, J. J. Angle-suppressed scattering and optical forces on submicrometer dielectric particles. J. Opt. Soc. Am. A 28, 54–60 (2011).

    Article  ADS  Google Scholar 

  32. Novitsky, A., Qiu, C.-W. & Lavrinenko, A. Material-independent and size-independent tractor beams for dipole objects. Phys. Rev. Lett. 109, 023902 (2012).

    Article  ADS  Google Scholar 

  33. Geffrin, J. M. et al. Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nature Commun. 3, 1171–1178 (2012).

    Article  ADS  Google Scholar 

  34. Mizrahi, A. & Fainman, Y. Negative radiation pressure on gain medium structures. Opt. Lett. 35, 3405–3407 (2010).

    Article  ADS  Google Scholar 

  35. Webb, K. J. & Shivanand, K. Negative electromagnetic plane-wave force in gain media. Phys. Rev. E 84, 057602 (2011).

    Article  ADS  Google Scholar 

  36. Kudo, T. & Ishihara, H. Proposed nonlinear resonance laser technique for manipulating nanoparticles. Phys. Rev. Lett. 109, 087402 (2012).

    Article  ADS  Google Scholar 

  37. Swartzlander, G. A., Peterson, T. J., Artusio-Glimpse, A. B. & Raisanen, A. D. Stable optical lift. Nature Photon. 5, 48–51 (2011).

    Article  ADS  Google Scholar 

  38. Sukhov, S. & Dogariu, A. On the concept of 'tractor beams'. Opt. Lett. 35, 3847–3849 (2010).

    Article  ADS  Google Scholar 

  39. Lee, S.-H., Roichman, Y. & Grier, D. G. Optical solenoid beams. Opt. Express 18, 6988–6993 (2010).

    Article  ADS  Google Scholar 

  40. Chen, J., Ng, J., Lin, Z. & Chan, C. T. Optical pulling force. Nature Photon. 5, 531–534 (2011).

    Article  ADS  Google Scholar 

  41. Novitsky, A., Qiu, C.-W. & Wang, H. Single gradientless light beam drags particles as tractor beams. Phys. Rev. Lett. 107, 203601 (2011).

    Article  ADS  Google Scholar 

  42. Sáenz, J. J. Optical forces: laser tractor beams. Nature Photon. 5, 514–515 (2011).

    Article  ADS  Google Scholar 

  43. Sukhov, S. & Dogariu, A. Negative nonconservative forces: optical 'tractor beams' for arbitrary objects. Phys. Rev. Lett. 107, 203602 (2011).

    Article  ADS  Google Scholar 

  44. Gómez-Medina, R. et al. Electric and magnetic optical response of dielectric nanospheres: optical forces and scattering anisotropy. Photon. Nanostruct. 10, 345–352 (2012).

    Article  ADS  Google Scholar 

  45. Hänggi, P. & Marchesoni, F. Artificial Brownian motors: controlling transport on the nanoscale. Rev. Mod. Phys. 81, 387–442 (2009).

    Article  ADS  Google Scholar 

  46. Douglass, K. M., Sukhov, S. & Dogariu, A. Superdiffusion in optically controlled active media. Nature Photon. http://dx.doi.org/10.1038/nphoton.2012.278 (2012).

Download references

Acknowledgements

The authors thank E. Sahagún for help in preparing figures. A.D. and S.S. acknowledge partial support from the Air Force Office of Scientific Research and the National Science Foundation. J.J.S. acknowledges support from the Spanish Ministerio de Ciencia e Innovación through Consolider NanoLight (CSD2007-00046) and from the Comunidad de Madrid Microseres-CM (S2009/TIC-1476).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aristide Dogariu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dogariu, A., Sukhov, S. & Sáenz, J. Optically induced 'negative forces'. Nature Photon 7, 24–27 (2013). https://doi.org/10.1038/nphoton.2012.315

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.315

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing