Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Entanglement-enhanced probing of a delicate material system

Abstract

Quantum metrology1 uses entanglement2,3,4,5 and other quantum effects6 to improve the sensitivity of demanding measurements7,8,9. Probing of delicate systems demands high sensitivity from limited probe energy and has motivated the field's key benchmark—the standard quantum limit10. Here we report the first entanglement-enhanced measurement of a delicate material system. We non-destructively probe an atomic spin ensemble by means of near-resonant Faraday rotation, a measurement that is limited by probe-induced scattering in quantum-memory and spin-squeezing applications6,11,12,13. We use narrowband, atom-resonant NOON states to beat the standard quantum limit of sensitivity by more than five standard deviations, both on a per-photon and per-damage basis. This demonstrates quantum enhancement with fully realistic loss and noise, including variable-loss effects14,15,16. The experiment opens the way to ultra-gentle probing of single atoms17, single molecules18, quantum gases19 and living cells20.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: NOON state probing of an atomic ensemble by Faraday rotation.
Figure 2: High-visibility super-resolving Faraday rotation probing using optical NOON states.
Figure 3: NOON state characterization.
Figure 4: Quantum enhancement in probing of a delicate system, quantified by FI per mean scattering (S) from the 85Rb atomic ensemble.
Figure 5: Spectroscopic characterization of the rubidium atomic ensemble.

Similar content being viewed by others

References

  1. Giovannetti, V., Lloyd, S. & Maccone, L. Advances in quantum metrology. Nature Photon. 5, 222–229 (2011).

    Article  ADS  Google Scholar 

  2. Leibfried, D. et al. Toward Heisenberg-limited spectroscopy with multiparticle entangled states. Science 304, 1476–1478 (2004).

    Article  ADS  Google Scholar 

  3. Mitchell, M. W., Lundeen, J. S. & Steinberg, A. M. Super-resolving phase measurements with a multiphoton entangled state. Nature 429, 161–164 (2004).

    Article  ADS  Google Scholar 

  4. Vahlbruch, H. et al. Observation of squeezed light with 10-dB quantum-noise reduction. Phys. Rev. Lett. 100, 033602 (2008).

    Article  ADS  Google Scholar 

  5. Afek, I., Ambar, O. & Silberberg, Y. High-NOON states by mixing quantum and classical light. Science 328, 879–881 (2010).

    Article  ADS  MathSciNet  Google Scholar 

  6. Napolitano, M. et al. Interaction-based quantum metrology showing scaling beyond the Heisenberg limit. Nature 471, 486–489 (2011).

    Article  ADS  Google Scholar 

  7. Wolfgramm, F. et al. Squeezed-light optical magnetometry. Phys. Rev. Lett. 105, 053601 (2010).

    Article  ADS  Google Scholar 

  8. Shah, V., Vasilakis, G. & Romalis, M. V. High bandwidth atomic magnetometery with continuous quantum nondemolition measurements. Phys. Rev. Lett. 104, 013601 (2010).

    Article  ADS  Google Scholar 

  9. The LIGO Scientific Collaboration. A gravitational wave observatory operating beyond the quantum shot-noise limit. Nature Phys. 7, 962–965 (2011).

  10. Braunstein, S. L. Quantum metrology: size isn't everything. Nature 440, 617–618 (2006).

    Article  ADS  Google Scholar 

  11. Madsen, L. B. & Mølmer, K. Spin squeezing and precision probing with light and samples of atoms in the Gaussian description. Phys. Rev. A 70, 052324 (2004).

    Article  ADS  Google Scholar 

  12. Julsgaard, B., Sherson, J., Cirac, J. I., Fiurasek, J. & Polzik, E. S. Experimental demonstration of quantum memory for light. Nature 432, 482–486 (2004).

    Article  ADS  Google Scholar 

  13. Koschorreck, M., Napolitano, M., Dubost, B. & Mitchell, M. W. Quantum nondemolition measurement of large-spin ensembles by dynamical decoupling. Phys. Rev. Lett. 105, 093602 (2010).

    Article  ADS  Google Scholar 

  14. Kacprowicz, M., Demkowicz-Dobrzanski, R., Wasilewski, W., Banaszek, K. & Walmsley, I. A. Experimental quantum-enhanced estimation of a lossy phase shift. Nature Photon. 4, 357–360 (2010).

    Article  ADS  Google Scholar 

  15. Thomas-Peter, N. et al. Real-world quantum sensors: evaluating resources for precision measurement. Phys. Rev. Lett. 107, 113603 (2011).

    Article  ADS  Google Scholar 

  16. Escher, B. M., de Matos Filho, R. L. & Davidovich, L. General framework for estimating the ultimate precision limit in noisy quantum-enhanced metrology. Nature Phys. 7, 406–411 (2011).

    Article  ADS  Google Scholar 

  17. Tey, M. K. et al. Strong interaction between light and a single trapped atom without the need for a cavity. Nature Phys. 4, 924–927 (2008).

    Article  ADS  Google Scholar 

  18. Pototschnig, M. et al. Controlling the phase of a light beam with a single molecule. Phys. Rev. Lett. 107, 063001 (2011).

    Article  ADS  Google Scholar 

  19. Eckert, K. et al. Quantum non-demolition detection of strongly correlated systems. Nature Phys. 4, 50–54 (2008).

    Article  ADS  Google Scholar 

  20. Carlton, P. M. et al. Fast live simultaneous multiwavelength four-dimensional optical microscopy. Proc. Natl Acad. Sci. USA 107, 16016–16022 (2010).

    Article  ADS  Google Scholar 

  21. Dorner, U. et al. Optimal quantum phase estimation. Phys. Rev. Lett. 102, 040403 (2009).

    Article  ADS  Google Scholar 

  22. Banaszek, K., Demkowicz-Dobrzanski, R. & Walmsley, I. A. Quantum states made to measure. Nature Photon. 3, 673–676 (2009).

    Article  ADS  Google Scholar 

  23. Schleier-Smith, M. H., Leroux, I. D. & Vuletić, V. States of an ensemble of two-level atoms with reduced quantum uncertainty. Phys. Rev. Lett. 104, 073604 (2010).

    Article  ADS  Google Scholar 

  24. Smith, B. J., Mosley, P. J., Lundeen, J. S. & Walmsley, I. A. in Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference and Photonic Applications Systems Technologies, OSA Technical Digest Series (CD) paper QFI5 (Optical Society of America, 2008).

    Google Scholar 

  25. Matthews, J. C. F., Politi, A., Bonneau, D. & O'Brien, J. L. Heralding two-photon and four-photon path entanglement on a chip. Phys. Rev. Lett. 107, 163602 (2011).

    Article  ADS  Google Scholar 

  26. Afek, I., Ambar, O. & Silberberg, Y. Classical bound for Mach–Zehnder superresolution. Phys. Rev. Lett. 104, 123602 (2010).

    Article  ADS  Google Scholar 

  27. Adamson, R. B. A., Shalm, L. K., Mitchell, M. W. & Steinberg, A. M. Multiparticle state tomography: hidden differences. Phys. Rev. Lett. 98, 043601 (2007).

    Article  ADS  Google Scholar 

  28. Kuklewicz, C. E., Wong, F. N. C. & Shapiro, J. H. Time-bin-modulated biphotons from cavity-enhanced down-conversion. Phys. Rev. Lett. 97, 223601 (2006).

    Article  ADS  Google Scholar 

  29. Fisher, R. A. Theory of statistical estimation. Proc. Camb. Phil. Soc. 22, 700–725 (1925).

    Article  ADS  Google Scholar 

  30. Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 (2008).

    Article  ADS  Google Scholar 

  31. Chuu, C-S. & Harris, S. E. Ultrabright backward-wave biphoton source Phys. Rev. A 83, 061803 (2011).

    Article  ADS  Google Scholar 

  32. Auzinsh, M. et al. Can a quantum nondemolition measurement improve the sensitivity of an atomic magnetometer? Phys. Rev. Lett. 93, 173002 (2004).

    Article  ADS  Google Scholar 

  33. Wolfgramm, F. et al. Bright filter-free source of indistinguishable photon pairs. Opt. Express 16, 18145–18151 (2008).

    Article  ADS  Google Scholar 

  34. Wolfgramm, F., Cerè, A. & Mitchell, M. W. NOON states from cavity-enhanced down-conversion: high quality and super-resolution. J. Opt. Soc. Am. B 27, A25–A29 (2010).

    Article  ADS  Google Scholar 

  35. Cerè, A. et al. Narrowband tunable filter based on velocity-selective optical pumping in an atomic vapor. Opt. Lett. 34, 1012–1014 (2009).

    Article  ADS  Google Scholar 

  36. Wolfgramm, F., de Icaza Astiz, Y. A., Beduini, F. A., Cerè, A. & Mitchell, M. W. Atom-resonant heralded single photons by interaction-free measurement. Phys. Rev. Lett. 106, 053602 (2011).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank A. Cerè, Y.A. de Icaza Astiz, M. Napolitano, N. Behbood, R.J. Sewell and M. Hendrych for useful discussions. This work was supported by the Spanish Ministerio de Economia y Competitividad under the project Magnetometria Optica (no. FIS2011-23520), by the European Research Council starting grant ‘AQuMet’, by Fundació Privada Cellex and by an Institute of Photonic Sciences – Ontario Centres of Excellence collaborative research programme. F.W. is supported by the Commission for Universities and Research of the Department of Innovation, Universities and Enterprises of the Catalan Government and the European Social Fund. N.G. acknowledges support from the National Sciences and Engineering Research Council of Canada.

Author information

Authors and Affiliations

Authors

Contributions

F.W. and M.W.M. conceived and designed the project. F.W., C.V. and F.A.B. designed, constructed and tested the apparatus. F.W. acquired the data and performed the analysis. M.W.M. and N.G. performed the modelling and simulation. All authors contributed to the preparation of the manuscript.

Corresponding author

Correspondence to Morgan W. Mitchell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2464 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wolfgramm, F., Vitelli, C., Beduini, F. et al. Entanglement-enhanced probing of a delicate material system. Nature Photon 7, 28–32 (2013). https://doi.org/10.1038/nphoton.2012.300

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.300

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing