Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Photoconductivity of biased graphene

Abstract

Graphene is a promising candidate for optoelectronic applications such as photodetectors, terahertz imagers and plasmonic devices. The origin of the photoresponse in graphene junctions has been studied extensively and is attributed to either thermoelectric or photovoltaic effects. In addition, hot carrier transport and carrier multiplication are thought to play an important role. Here, we report the intrinsic photoresponse in biased but otherwise homogeneous graphene. In this classic photoconductivity experiment, the thermoelectric effects are insignificant. Instead, the photovoltaic and a photo-induced bolometric effect dominate the photoresponse. The measured photocurrent displays polarity reversal as it alternates between these two mechanisms in a backgate voltage sweep. Our analysis yields elevated electron and phonon temperatures, with the former an order higher than the latter, shedding light on the understanding of the hot electron-driven photoresponse in graphene and its energy loss pathway via phonons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoconductivity (a.c.) of graphene with and without bias.
Figure 2: Photocurrent (a.c.) as a function of gate voltage.
Figure 3: Gate and drain voltage dependence of the photocurrent in the centre of the graphene detector.
Figure 4: Thermoelectric, bolometric and photovoltaic components of the graphene photocurrent.
Figure 5: Magnitude of bolometric and photovoltaic effects and determination of the hot electron and lattice temperatures.

Similar content being viewed by others

References

  1. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  2. Lee, E. J. H., Balasubramanian, K., Weitz, R. T., Burghard, M. & Kern, K. Contact and edge effects in graphene devices. Nature Nanotech. 3, 486–490 (2008).

    Article  ADS  Google Scholar 

  3. Mueller, T., Xia, F., Freitag, M., Tsang, J. & Avouris, P. Role of contacts in graphene transistors: a scanning photocurrent study. Phys. Rev. B 79, 245430 (2009).

    Article  ADS  Google Scholar 

  4. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  ADS  Google Scholar 

  5. Peters, E. C., Lee, E. J., Burghard, M. & Kern, K. Gate dependent photocurrents at a graphene p–n junction. Appl. Phys. Lett. 97, 193102 (2010).

    Article  ADS  Google Scholar 

  6. Xu, X., Gabor, N. M., Alden, J. S., van der Zande, A. M. & McEuen, P. L. Photo-thermoelectric effect at a graphene interface junction. Nano Lett. 10, 562–566 (2009).

    Article  ADS  Google Scholar 

  7. Rao, G., Freitag, M., Chiu, H-Y., Sundaram, R. S. & Avouris, P. Raman and photocurrent imaging of electrical stress-induced p–n junctions in graphene. ACS Nano 5, 5848–5854 (2011).

    Article  Google Scholar 

  8. Lemme, M. C. et al. Gate-activated photoresponse in a graphene p–n junction. Nano Lett. 11, 4134–4137 (2011).

    Article  ADS  Google Scholar 

  9. Song, J. C. W., Rudner, M. S., Marcus, C. M. & Levitov, L. S. Hot carrier transport and photocurrent response in graphene. Nano Lett. 11, 4688–4692 (2011).

    Article  ADS  Google Scholar 

  10. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  11. George, P. A. et al. Ultrafast optical-pump terahertz-probe spectroscopy of the carrier relaxation and recombination dynamics in epitaxial graphene. Nano Lett. 8, 4248–4251 (2008).

    Article  ADS  Google Scholar 

  12. Sun, D. et al. Ultrafast relaxation of excited Dirac fermions in epitaxial graphene using optical differential transmission spectroscopy. Phys. Rev. Lett. 101, 157402 (2008).

    Article  ADS  Google Scholar 

  13. Bistritzer, R. & MacDonald, A. H. Electronic cooling in graphene. Phys. Rev. Lett. 102, 206410 (2009).

    Article  ADS  Google Scholar 

  14. Strait, J. H. et al. Very slow cooling dynamics of photoexcited carriers in graphene observed by optical-pump terahertz-probe spectroscopy. Nano Lett. 11, 4902–4906 (2011).

    Article  ADS  Google Scholar 

  15. Kim, R., Perebeinos, V. & Avouris, P. Relaxation of optically excited carriers in graphene. Phys. Rev. B 84, 075449 (2011).

    Article  ADS  Google Scholar 

  16. Sun, D. et al. Ultrafast hot-carrier-dominated photocurrent in graphene. Nature Nanotech. 7, 114–118 (2012).

    Article  ADS  Google Scholar 

  17. Urich, A., Unterrainer, K. & Mueller, T. Intrinsic response time of graphene photodetectors. Nano Lett. 11, 2804–2808 (2011).

    Article  ADS  Google Scholar 

  18. Xia, F., Mueller, T., Lin, Y.-M., Valdes-Garcia, A. & Avouris, P. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  ADS  Google Scholar 

  19. Yan, J. et al. Dual-gated bilayer graphene hot-electron bolometer. Nature Nanotech. 7, 472–478 (2012).

    Article  ADS  Google Scholar 

  20. Vora, H., Kumaravadivel, P., Nielsen, B. & Du, X. Bolometric response in graphene based superconducting tunnel junctions. Appl. Phys. Lett. 100, 153507 (2012).

    Article  ADS  Google Scholar 

  21. Chen, J-H., Jang, C., Xiao, S., Ishigami, M. & Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2 . Nature Nanotech. 3, 206–209 (2008).

    Article  Google Scholar 

  22. Zhu, W., Perebeinos, V., Freitag, M. & Avouris, P. Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene. Phys. Rev. B 80, 235402 (2009).

    Article  ADS  Google Scholar 

  23. Efetov, D. K. & Kim, P. Controlling electron–phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  ADS  Google Scholar 

  24. Tse, W-K. & Das Sarma, S. Energy relaxation of hot Dirac fermions in graphene. Phys. Rev. B 79, 235406 (2009).

    Article  ADS  Google Scholar 

  25. Freitag, M. et al. Energy dissipation in graphene field-effect transistors. Nano Lett. 9, 1883–1888 (2009).

    Article  ADS  Google Scholar 

  26. Koh, Y. K., Bae, M-H., Cahill, D. G. & Pop, E. Heat conduction across monolayer and few-layer graphenes. Nano Lett. 10, 4363–4368 (2010).

    Article  ADS  Google Scholar 

  27. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    Article  ADS  Google Scholar 

  28. Perebeinos, V., Rotkin, S. V., Petrov, A. G. & Avouris, P. The effects of substrate phonon mode scattering on transport in carbon nanotubes. Nano Lett. 9, 312–316 (2008).

    Article  ADS  Google Scholar 

  29. Rotkin, S. V., Perebeinos, V., Petrov, A. G. & Avouris, P. An essential mechanism of heat dissipation in carbon nanotube electronics. Nano Lett. 9, 1850–1855 (2009).

    Article  ADS  Google Scholar 

  30. Low, T., Perebeinos, V., Kim, R., Freitag, M. & Avouris, P. Cooling of photoexcited carriers in graphene by internal and substrate phonons. Phys. Rev. B 86, 045413 (2012).

    Article  ADS  Google Scholar 

  31. Song, J. C. W., Reizer, M. Y. & Levitov, L. S. Disorder-assisted electron–phonon scattering and cooling pathways in graphene. Phys. Rev. Lett. 109, 106602 (2012).

    Article  ADS  Google Scholar 

  32. Thongrattanasiri, S., Koppens, F. H. L. & Garcia de Abajo, F. J. Complete optical absorption in periodically patterned graphene. Phys. Rev. Lett. 108, 047401 (2012).

    Article  ADS  Google Scholar 

  33. Ju, L. et al. Graphene plasmonics for tunable terahertz metamaterials. Nature Nanotech. 6, 630–634 (2011).

    Article  ADS  Google Scholar 

  34. Yan, H. et al. Tunable infrared plasmonic devices using graphene/insulator stacks. Nature Nanotech. 7, 330–334 (2012).

    Article  ADS  Google Scholar 

  35. Shi, Y., Fang, W., Zhang, K., Zhang, W. & Li, L.-J. Photoelectrical response in single-layer graphene transistors. Small 5, 2005–2011 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank B. Ek and J. Bucchignano for help with device fabrication and V. Perebeinos for discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Marcus Freitag or Fengnian Xia.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 425 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Freitag, M., Low, T., Xia, F. et al. Photoconductivity of biased graphene. Nature Photon 7, 53–59 (2013). https://doi.org/10.1038/nphoton.2012.314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing