Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles

Abstract

The use of commercial long-wavelength (>650 nm) laser dyes in many biophotonic applications has several important limitations, including low absorption at the standard pump wavelength (532 nm) and poor photostability. Here, we demonstrate that the use of Förster type (FRET) energy transfer can overcome these problems to enable efficient, stable near-infrared lasing in a colloidal suspension of latex nanoparticles containing a mixture of Rhodamine 6G and Nile Blue dyes. Experimental and theoretical analyses of the photophysics suggest that the dominant energy transfer mechanism is Förster type via dipole–dipole coupling, and also reveal an unexpected core/shell morphology in the dye-doped nanoparticles. FRET-assisted incoherent random lasing is also demonstrated in solid samples obtained by evaporation of colloidal suspensions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: FRET-assisted laser emission measurements.
Figure 2: Photophysical study of colloidal suspensions.
Figure 3: FRET-assisted incoherent random lasing.

Similar content being viewed by others

References

  1. Duarte, F. J. & Hillman, L. W. (eds) Dye Laser Principles (Academic, 1990).

    Google Scholar 

  2. Duarte, F. J. (ed.) Tunable Lasers Handbook (Academic, 1995).

    Google Scholar 

  3. Duarte, F. J. (ed.) Tunable Lasers Applications (CRC, 2009).

    Google Scholar 

  4. Steiner R. in Applied Laser Medicine (eds Berlien, H. P. & Müller, G. H.) 101–106 (Springer-Verlag, 2003).

    Google Scholar 

  5. Backmann, U. (ed.) Lambdachorme Laser Dyes (Lambda Physik, 2000).

    Google Scholar 

  6. Förster, T. Zwischenmolekulare energiewanderung und fluoreszenz. Ann. Phys. (Leipz.) 2, 55–75 (1948).

    Article  ADS  Google Scholar 

  7. Förster, T. Experimentelle und theoretische Untersuchung des zwischenmolecularen Uebergangs von Electronenanregungsenergie. Z. Naturforsch. 4A, 321–327 (1949).

    ADS  Google Scholar 

  8. Tcherkasskaya, O., Spiro, J. S., Ni, S. & Winnick, A. Energy transfer in restricted geometry: polyisoprene-poly(methyl methacrylate) block copolymer. J. Phys. Chem. 100, 7114–7121 (1996).

    Article  Google Scholar 

  9. Scott, B. J., Bartl, M. H., Wirnsberger, G. & Stucky, G. D. Energy transfer in dye-doped mesostructured composites. J. Phys. Chem. A 107, 5499–5502 (2003).

    Article  Google Scholar 

  10. Li, K. J., Oh, J. H., Kim, Y. & Jang, J. Macroscopic parallel nanocylinder array fabrication using a simple rubbing technique. Adv. Mater. 18, 2213–2215 (2006).

    Article  Google Scholar 

  11. Farinha, J. P. S. & Martinho, J. M. G. Resonance energy transfer in polymer nanodomains. J. Phys. Chem. C 112, 10591–10601 (2008).

    Article  Google Scholar 

  12. Lei, J., Wang, L. & Zhang, J. Radiometric pH sensor based on mesoporous silicananoparticles and Förster resonance energy transfer. Chem. Commun. 46, 8445–8447 (2010).

    Article  Google Scholar 

  13. Sen, T., Jana, S., Koner, S. & Patra, A. Efficient energy transfer between confined dye and Y-zeolite functionalized Au nanoparticles. J. Phys. Chem. C 114, 19667–19672 (2010).

    Article  Google Scholar 

  14. Ma, C., Zeng, F., Huang, L. & Wu, S. FRET-based radiometric detection system for mercury ions in water with polymeric particles as scaffolds. J. Phys. Chem. B 115, 874–882 (2011).

    Article  Google Scholar 

  15. Guo, D., Knight, T. E. & McCusker, J. K. Angular momentum conservation in dipolar energy transfer. Science 334, 1684–1687 (2011).

    Article  ADS  Google Scholar 

  16. Wang, L., Liu, Y., Chen, F., Zhang, J. & Anpo, M. Manipulating energy transfer processes between rhodamine 6G and rhodamine B in different mesoporous hosts. J. Phys. Chem. C 111, 5541–5548 (2007).

    Article  Google Scholar 

  17. Wu, C., Zheng, Y., Szymanski, C. & McNeill, J. Energy transfer in a nanoscale multichromophoric system: fluorescent dye-doped conjugated polymer nanoparticles. J. Phys. Chem. C 112, 1772–1781 (2008).

    Article  Google Scholar 

  18. Enciso, E., Costela, A., García-Moreno, I., Martín, V. & Sastre, R. Conventional unidirectional laser action enhanced by eye confined in nanoparticles scatters. Langmuir 26, 6154–6157 (2010).

    Article  Google Scholar 

  19. Martín, V. et al. Photophysical and lasing properties of rhodamine 6G confined in polymeric nanoparticles. J. Phys. Chem. C 115, 3926–3933 (2011).

    Article  Google Scholar 

  20. Costela, A., García-Moreno, I. & Sastre, R. Polymeric solid-state dye lasers: recent developments. Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).

    Article  Google Scholar 

  21. Lakowicz, J. R. (ed.) Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, 1999).

    Book  Google Scholar 

  22. Yekta, A., Winnik, M. A., Farinha, J. P. S. & Martinho, J. M. G. Dipole–dipole electronic energy transfer. Fluorescence decay functions for arbitrary distributions of donors and acceptors. II. Systems with spherical symmetry. J. Phys. Chem. A 101, 1787–1792 (1997).

    Article  Google Scholar 

  23. Farinha, J. P. S., Charreyre, M-T., Martinho, J. M. G., Winnik, M. A. & Pichot, C. Picosecond fluorescence studies of the surface morphology of charged polystyrene latex particles. Langmuir 17, 2617–2623 (2001).

    Article  Google Scholar 

  24. Barberan-Santos, M. N., Nunes Pereira, E. J. & Martinho, J. M. G. Stochastic theory of combined radiative and nonradiative transport. J. Chem. Phys. 107, 10480–10484 (1997).

    Article  ADS  Google Scholar 

  25. Wiersma, D. S. The physics and applications of random lasers. Nature Phys. 4, 359–367 (2008).

    Article  ADS  Google Scholar 

  26. Cao, H. Lasing in random media. Waves Random Media 13, R1–R39 (2003).

    Article  ADS  Google Scholar 

  27. Andreasen, J. et al. Modes of random lasers. Adv. Opt. Photon. 3, 88–127 (2011).

    Article  Google Scholar 

  28. Lopez Arbeloa, F., Lopez Arbeloa, T. & Lopez Arbeloa, I. in Handbook of Advances Electronic and Photonic Materials and Devices Ch. 5 (Academic, 2001).

    Google Scholar 

  29. López Arbeloa, I. Fluorescence quantum yield evaluation: corrections for re-absorption and re-emission. J. Photochem. 14, 97–105 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Spanish MICINN (projects TRACE2009-0144, MAT2010-20646-C04-01, MAT2010-20646-C04-04 and MAT2007-65711-C04-02). The authors thank Gobierno Vasco (IT339-10) and Universidad Complutense/Banco Santander (grant no. 921556) for financial support. L.C. thanks MICINN for a predoctoral scholarship (FPI, co-financed by Fondo Social Europeo). The authors also acknowledge technical assistance from the ICTS Microscopy National Center (UCM).

Author information

Authors and Affiliations

Authors

Contributions

L.C. conducted the theoretical FRET analysis and solid sample measurements. E.E. proposed the study of FRET phenomenology in nanoparticles, synthesized the particles and helped with the theoretical FRET analysis. V.M. contributed with sample preparation. J.B. and I.L.-A. conducted the photophysical studies. A.C. supervised and coordinated the project. I.G.-M. conducted the laser measurements and supervised and coordinated the project. L.C. and I.G.-M. coordinated the manuscript preparation. All authors contributed to writing the paper.

Corresponding author

Correspondence to Luis Cerdán.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 954 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cerdán, L., Enciso, E., Martín, V. et al. FRET-assisted laser emission in colloidal suspensions of dye-doped latex nanoparticles. Nature Photon 6, 621–626 (2012). https://doi.org/10.1038/nphoton.2012.201

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.201

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing