Transfer-printed stacked nanomembrane lasers on silicon

Journal name:
Nature Photonics
Volume:
6,
Pages:
615–620
Year published:
DOI:
doi:10.1038/nphoton.2012.160
Received
Accepted
Published online

Abstract

The realization of silicon-based light sources has been the subject of a major research and development effort worldwide. Such sources may help make integrated photonic and electronic circuitry more cost-effective, with higher performance and greater energy efficiency. The hybrid approach, in which silicon is integrated with a IIIV gain medium, is an attractive route in the development of silicon lasers because of its potential for high efficiency. Hybrid lasers with good performance have been reported that are fabricated by direct growth or direct wafer-bonding of the gain medium to silicon. Here, we report a membrane reflector surface-emitting laser on silicon that is based on multilayer semiconductor nanomembrane stacking and a stamp-assisted transfer-printing process. The optically pumped laser consists of a transferred IIIV InGaAsP quantum-well heterostructure as the gain medium, which is sandwiched between two thin, single-layer silicon photonic-crystal Fano resonance membrane reflectors. We also demonstrate high-finesse single- or multiwavelength vertical laser cavities.

At a glance

Figures

  1. MR-VCSEL on silicon.
    Figure 1: MR-VCSEL on silicon.

    a, Schematic of a lasing cavity that consists of five layers (t1t5), with a total thickness of 1–2 wavelengths. An InGaAsP quantum well is sandwiched between two single-layer Si-MRs. Also shown is a simulated electrical field distribution in the cavity for a lasing mode at 1,527 nm, with a confinement factor of 6%. b, A cutout view of the complete MR-VCSEL. c, Illustration of the multilayer printing process for the formation of an MR-VCSEL (top Si-MR/quantum well/bottom Si-MR). The diameter of the active area is D. d, SEM image of InGaAsP quantum-well disks/mesas transferred onto a bottom Si-MR. Inset: optical image, showing a central dark region representing the 1 × 1 mm2 bottom membrane reflector. e, Zoom-in view of one InGaAsP quantum well disk on the bottom Si-MR. Inset: quantum well heterostructure. f, SEM image of a complete MR-VCSEL, showing an InGaAsP quantum well disk sandwiched between top and bottom Si-MRs. Inset: SEM top view of an InGaAsP quantum well disk underneath a large top Si-MR layer.

  2. Top and bottom membrane reflector performances.
    Figure 2: Top and bottom membrane reflector performances.

    Top row shows results for top membrane reflectors. Bottom row show results for bottom membrane reflectors. a, SEM images (top and cross-sectional views) of a fabricated Si-MR on SOI. The key design parameters are lattice constant a, air hole radius r and membrane reflector thickness tSi. b, Micrograph image of a fabricated top Si-MR transferred onto a glass substrate. c,d, Simulated (S) and measured (M) reflection spectra for the top Si-MR on glass designed for the 1,550 nm spectral band (c, RT design: a = 980 nm, r/a = 0.275) and for the 1,450 nm spectral band (d, LT design: a = 860 nm, r/a = 0.46), with the inset to d showing a zoom-in SEM image. e, SEM image of a fabricated bottom Si-MR on SOI, with a SiO2 low-index buffer layer (t2) deposited on top. f, Micrograph image of a fabricated bottom Si-MR on an SOI substrate. g,h, Simulated (S) and measured (M) reflection spectra for the bottom Si-MR (with a SiO2 t2 layer) designed for 1,550 nm (g, RT design: a = 880 nm, r/a = 0.45) and 1,450 nm (h, LT design: a = 880 nm, r/a = 0.47) spectral bands. Insets: SEM top-view images of the bottom Si-MR before and after SiO2 (t2) layer deposition.

  3. Low-temperature MR-VCSEL performances.
    Figure 3: Low-temperature MR-VCSEL performances.

    a, Lasing power and linewidth versus input power. b, Measured spectral outputs of the MR-VCSEL at four pump power levels: below (i), at (ii) and above (iii, iv) threshold. Inset (left): spontaneous emission spectrum below threshold. Inset (right): far-field image above threshold. c, Measured temperature-dependent lasing peaks, as well as calculated cavity resonance shift (dλc/dT). Also shown is the measured as-grown quantum well emission spectral shift with temperature. d, Measured lasing threshold power for different temperatures, with a characteristic temperature T0 of 125 K.

  4. RT design of MR-VCSELs and multispectral lasing.
    Figure 4: RT design of MR-VCSELs and multispectral lasing.

    a, Laser L–L curve at room temperature for the RT design of MR-VCSEL device. Inset: measured spectral output above threshold at a pump power of 36 mW. b, Measured MR-VCSEL spectral outputs at different temperatures for both LT and RT designs: (i) T = 10 K; (ii) T = 50 K; (iii) T = 120 K; (iv) T = 300 K. Portions of measured top (Rt, dash lines) and bottom (Rb, solid lines) reflection spectra are also shown for both LT and RT designs.

References

  1. Maiman, T. H. Stimulated optical radiation in ruby. Nature 187, 493494 (1960).
  2. Miller, D. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 11661185 (2009).
  3. Soref, R. A. The past, present, and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12, 16781687 (2006).
  4. Pavesi, L. Will silicon be the photonic material for the third millenium? J. Phys. Condens. Mattter 15, R1169R1196 (2003).
  5. Liu, J. F., Sun, X. C., Camacho-Aguilera, R., Kimerling, L. C. & Michel, J. Ge-on-Si laser operating at room temperature. Opt. Lett. 35, 679681 (2010).
  6. Boyraz, O. & Jalali, B. Demonstration of a silicon Raman laser. Opt. Express 12, 52695273 (2004).
  7. Rong, H., Liu, A. & Paniccia, M. An all-silicon Raman laser. Nature 433, 292294 (2005).
  8. Chen, R. et al. Nanolasers grown on silicon. Nature Photon. 5, 170175 (2011).
  9. Mi, Z., Bhattacharya, P., Yang, J. & Pipe, K. P. Room-temperature self organized In0.5Ga0.5As quantum dot laser on silicon. Electron. Lett 41, 742744 (2005).
  10. Balakrishnan, G. et al. Room-temperature optically pumped (Al) GaSb vertical-cavity surface-emitting laser monolithically grown on an Si(100) substrate. IEEE J. Sel. Top. Quantum Electron. 12, 16361641 (2006).
  11. Bowers, J. E. et al. Design and fabrication of optically pumped hybrid silicon–AlGaInAs evanescent lasers. IEEE J. Sel. Top. Quantum Electron. 12, 16571663 (2006).
  12. Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 67446749 (2007).
  13. Stankovic, S. et al. 1310 nm hybrid IIIV/Si Fabry–Perot laser based on adhesive bonding. IEEE Photon. Technol. Lett. 23, 17811783 (2011).
  14. Sciancalepore, C. in 8th IEEE International Conference on Group IV Photonics (GFP) 205207 (IEEE, 2011).
  15. Bakir, B. B. et al. Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror. Appl. Phys. Lett. 88, 081113 (2006).
  16. Roelkens, G. et al. IIIV/silicon photonics for on-chip and intra-chip optical interconnects. Laser Photon. Rev. 4, 751779 (2010).
  17. Moutanabbir, O. & Gösele, U. Heterogeneous integration of compound semiconductors. Annu. Rev. Mater. Res. 40, 469500 (2010).
  18. Fan, S. & Joannopoulos, J. D. Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002).
  19. Lousse, V. et al. Angular and polarization properties of a photonic crystal slab mirror. Opt. Express 12, 15751582 (2004).
  20. Mateus, C. F. R., Huang, M. C. Y., Chen, L., Chang-Hasnain, C. J. & Suzuki, Y. Broadband mirror (1.12–1.62 µm) using single-layer sub-wavelength grating. IEEE Photon. Technol. Lett. 16, 16761678 (2004).
  21. Boutami, S. et al. Broadband and compact 2-D photonic crystal reflectors with controllable polarization dependence. IEEE Photon. Technol. Lett. 18, 835837 (2006).
  22. Magnusson, R. & Shokooh-Saremi, M. Physical basis for wideband resonant reflectors. Opt. Express 16, 34563462 (2008).
  23. Yang, H. et al. Resonance control of membrane reflectors with effective index engineering. Appl. Phys. Lett. 95, 023110 (2009).
  24. Yang, H. et al. Broadband membrane reflectors on glass. IEEE Photon. Technol. Lett. 24, 476478 (2012).
  25. Huang, M. C. Y., Zhou, Y. & Chang-Hasnain, C. J. A surface-emitting laser incorporating a high-index-contrast subwavelength grating. Nature Photon. 1, 119122 (2007).
  26. Boutami, S., Bakir, B., Regreny, P., Leclercq, J. & Viktorovitch, P. Compact 1.55 µm room-temperature optically pumped VCSEL using photonic crystal mirror. Electron. Lett. 43, 282283 (2007).
  27. Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nature Mater. 5, 3338 (2006).
  28. Sun, L., Qin, G., Celler, G. K., Zhou, W. & Ma, Z. 12-GHz thin-film transistors with transferrable silicon nanomembranes for high-performance massive flexible electronics (cover story). Small 6, 25532557 (2010).
  29. Wilmsen, C. W., Temkin, H. & Coldren, L. A. Vertical-Cavity Surface-Emitting Lasers: Design, Fabrication, Characterization, and Applications Vol. 24 (Cambridge Univ. Press, 2001).
  30. Zhao, D., Ma, Z. & Zhou, W. Field penetrations in photonic crystal Fano reflectors. Opt. Express 18, 1415214158 (2010).
  31. Yuan, H. C., Ma, Z., Roberts, M. M., Savage, D. E. & Lagally, M. G. High-speed strained-single-crystal-silicon thin-film transistors on flexible polymers. J. Appl. Phys. 100, 013708 (2006).
  32. Zhou, W. et al. Flexible photonic-crystal Fano filters based on transferred semiconductor nanomembranes. J. Phys. D 42, 234007 (2009).
  33. Rogers, J. A., Someya, T. & Huang, Y. Materials and mechanics for stretchable electronics. Science 327, 16031607 (2010).
  34. Rogers, J. A., Lagally, M. G. & Nuzzo, R. G. Synthesis, assembly and applications of semiconductor nanomembranes. Nature 477, 4553 (2011).
  35. Zhang, K., Seo, J. H., Zhou, W. & Ma, Z. Fast flexible electronics using transferrable silicon nanomembranes (topical review). J. Phys. D 45, 143001 (2012).
  36. Rapp, S. et al. All-epitaxial single-fused 1.55 µm vertical cavity laser based on an InP Bragg reflector. Jpn J. Appl. Phys 38, 12611264 (1999).

Download references

Author information

Affiliations

  1. Department of Electrical Engineering, NanoFAB Center, University of Texas at Arlington, Texas 76019, USA

    • Hongjun Yang,
    • Deyin Zhao,
    • Santhad Chuwongin,
    • Weiquan Yang,
    • Yichen Shuai &
    • Weidong Zhou
  2. Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Wisconsin 53706, USA

    • Jung-Hun Seo &
    • Zhenqiang Ma
  3. Semerane, Inc., 202 East Border Street, Suite 149, Arlington, Texas 76010, USA

    • Hongjun Yang
  4. KTH-Royal Institute of Technology, School of Information and Communication Technology, Electrum 229, 164 40 Kista, Sweden

    • Jesper Berggren &
    • Mattias Hammar

Contributions

H.Y., S.C., Y.S., Z.M. and W.Z. contributed to device fabrication. D.Z., Z.M. and W.Z. contributed to device design. W.Y., J.S., S.C., Z.M. and W.Z. contributed to nanomembrane transfer printing. H.Y., D.Z., S.C., Z.M. and W.Z. contributed to device characterization. J.B. and M.H. contributed to InGaAsP quantum well epitaxial growth. Z.M. and W.Z. guided the project. H.Y., D.Z., Z.M. and W.Z. wrote the paper.

Competing financial interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to:

Author details

Supplementary information

PDF files

  1. Supplementary information (520 KB)

    Supplementary information

Additional data