Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Artificial photosynthesis for solar water-splitting

Abstract

Hydrogen generated from solar-driven water-splitting has the potential to be a clean, sustainable and abundant energy source. Inspired by natural photosynthesis, artificial solar water-splitting devices are now being designed and tested. Recent developments based on molecular and/or nanostructure designs have led to advances in our understanding of light-induced charge separation and subsequent catalytic water oxidation and reduction reactions. Here we review some of the recent progress towards developing artificial photosynthetic devices, together with their analogies to biological photosynthesis, including technologies that focus on the development of visible-light active hetero-nanostructures and require an understanding of the underlying interfacial carrier dynamics. Finally, we propose a vision for a future sustainable hydrogen fuel community based on artificial photosynthesis.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Comparison between NPS and APS.
Figure 2: Structural designs of APS reaction processes.
Figure 3: New concepts of nanomaterial developments.
Figure 4: Photo-induced charge separation and recombination of a semiconductor photoanode.
Figure 5: Vision of a sustainable hydrogen fuel community based on APS.

Similar content being viewed by others

References

  1. Barber, J. Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    Article  Google Scholar 

  2. Blankenship, R. E. et al. Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332, 805–809 (2011).

    Article  ADS  Google Scholar 

  3. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving Photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    Article  ADS  Google Scholar 

  4. Barber, J. Crystal structure of the oxygen-evolving complex of Photosystem II. Inorg. Chem. 47, 1700–1710 (2008).

    Article  Google Scholar 

  5. Kronawitter, C. X. et al. A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energ. Environ. Sci. 4, 3889–3899 (2011).

    Article  Google Scholar 

  6. Maeda, K. & Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 1, 2655–2661 (2010).

    Article  Google Scholar 

  7. Tachibana, Y., Umekita, K., Otsuka, Y. & Kuwabata, S. Charge recombination kinetics at an in-situ chemical bath-deposited CdS/Nanocrystalline TiO2 Interface. J. Phys. Chem. C 113, 6852–6858 (2009).

    Article  Google Scholar 

  8. Wasielewski, M. R. Self-assembly strategies for integrating light harvesting and charge separation in artificial photosynthetic systems. Acc. Chem. Res. 42, 1910–1921 (2009).

    Article  Google Scholar 

  9. Yin, Q. et al. A fast soluble carbon-free molecular water oxidation catalyst based on abundant metals. Science 328, 342–345 (2010).

    Article  ADS  Google Scholar 

  10. Kanan, M. W. & Nocera, D. G. In-situ formation of an oxygen-evolving catalyst in neutral water containing phosphate and Co2+. Science 321, 1072–1075 (2008).

    Article  ADS  Google Scholar 

  11. Lewis, N. S. & Nocera, D. G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

    Article  ADS  Google Scholar 

  12. Sivasankar, N., Weare, W. W. & Frei, H. Direct observation of a hydroperoxide surface intermediate upon visible light-driven water oxidation at an Ir Oxide nanocluster catalyst by rapid-scan FT-IR spectroscopy. J. Am. Chem. Soc. 133, 12976–12979 (2011).

    Article  Google Scholar 

  13. Nocera, D. G. The artificial leaf. Acc. Chem. Res. 45, 767–776 (2012).

    Article  MathSciNet  Google Scholar 

  14. Fleming, G. R., Schlau-Cohen, G. S., Amarnath, K. & Zaks, J. Design principles of photosynthetic light-harvesting. Faraday Discuss. 155, 27–41 (2012).

    Article  ADS  Google Scholar 

  15. Herek, J. L., Wohlleben, W., Cogdell, R. J., Zeidler, D. & Motzkus, M. Quantum control of energy flow in light harvesting. Nature 417, 533–535 (2002).

    Article  ADS  Google Scholar 

  16. Siegbahn, P. E. M. Structures and energetics for O2 formation in Photosystem II. Acc. Chem. Res. 42, 1871–1880 (2009).

    Article  Google Scholar 

  17. Limburg, J. et al. A functional model for O–O bond formation by the O2-evolving complex in Photosystem II. Science 283, 1524–1527 (1999).

    Article  ADS  Google Scholar 

  18. Kudo, A. & Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 38, 253–278 (2009).

    Article  Google Scholar 

  19. Abe, R. Recent progress on photocatalytic and photoelectrochemical water splitting under visible light irradiation. J. Photochem. Photobiol. C 11, 179–209 (2010).

    Article  Google Scholar 

  20. Gust, D., Moore, T. A. & Moore, A. L. Solar fuels via artificial photosynthesis. Acc. Chem. Res. 42, 1890–1898 (2009).

    Article  Google Scholar 

  21. Hammarström, L. & Styring, S. Proton-coupled electron transfer of tyrosines in Photosystem II and model systems for artificial photosynthesis: The role of a redox-active link between catalyst and photosensitizer. Energ. Environ. Sci. 4, 2379–2388 (2011).

    Article  Google Scholar 

  22. Gonzalez-Rodriguez, D. et al. Activating multistep charge-transfer processes in fullerene–subphthalocyanine–ferrocene molecular hybrids as a function of ππ orbital overlap. J. Am. Chem. Soc. 132, 16488–16500 (2010).

    Article  Google Scholar 

  23. Fukuzumi, S. & Ohkubo, K. Assemblies of artificial photosynthetic reaction centers. J. Mater. Chem. 22, 4575–4587 (2012).

    Article  Google Scholar 

  24. Kodis, G., Liddell, P. A., Moore, A. L., Moore, T. A. & Gust, D. Synthesis and photochemistry of a carotene–porphyrin–fullerene model photosynthetic reaction center. J. Phys. Org. Chem. 17, 724–734 (2004).

    Article  Google Scholar 

  25. Gust, D., Moore, T. A. & Moore, A. L. Realizing artificial photosynthesis. Faraday Discuss. 155, 9–26 (2012).

    Article  ADS  Google Scholar 

  26. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  ADS  Google Scholar 

  27. Kato, H., Asakura, K. & Kudo, A. Highly efficient water splitting into H2 and O2 over lanthanum-doped NaTaO3 photocatalysts with high crystallinity and surface nanostructure. J. Am. Chem. Soc. 125, 3082–3089 (2003).

    Article  Google Scholar 

  28. Maeda, K. et al. Photocatalyst releasing hydrogen from water. Nature 440, 295 (2006).

    Article  ADS  Google Scholar 

  29. Reisner, E., Powell, D. J., Cavazza, C., Fontecilla-Camps, J. C. & Armstrong, F. A. Visible light-driven H2 production by hydrogenases attached to dye-sensitized TiO2 nanoparticles. J. Am. Chem. Soc. 131, 18457–18466 (2009).

    Article  Google Scholar 

  30. Chen, X., Shen, S., Guo, L. & Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110, 6503–6570 (2010).

    Article  Google Scholar 

  31. Youngblood, W. J. et al. Photoassisted overall water splitting in a visible light-absorbing dye-sensitized photoelectrochemical cell. J. Am. Chem. Soc. 131, 926–927 (2009).

    Article  Google Scholar 

  32. Brimblecombe, R., Koo, A., Dismukes, G. C., Swiegers, G. F. & Spiccia, L. Solar-driven water oxidation by a bio-inspired manganese molecular catalyst. J. Am. Chem. Soc. 132, 2892–2894 (2010).

    Article  Google Scholar 

  33. Maeda, K., Higashi, M., Lu, D., Abe, R. & Domen, K. Efficient nonsacrificial water splitting through two-step photoexcitation by visible light using a modified oxynitride as a hydrogen evolution photocatalyst. J. Am. Chem. Soc. 132, 5858–5868 (2010).

    Article  Google Scholar 

  34. Grätzel, M. Photoelectrochemical cells. Nature 414, 338–344 (2001).

    Article  ADS  Google Scholar 

  35. Duret, A. & Grätzel, M. Visible light-induced water oxidation on mesoscopic alpha-Fe2O3 films made by ultrasonic spray pyrolysis. J. Phys. Chem. B 109, 17184–17191 (2005).

    Article  Google Scholar 

  36. Walter, M. G. et al. Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    Article  Google Scholar 

  37. Sasaki, Y., Nemoto, H., Saito, K. & Kudo, A. Solar water splitting using powdered photocatalysts driven by Z-schematic interparticle electron transfer without an electron mediator. J. Phys. Chem. C 113, 17536–17542 (2009).

    Article  Google Scholar 

  38. Tada, H., Mitsui, T., Kiyonaga, T., Akita, T. & Tanaka, K. All-solid-state Z-scheme in CdS-Au-TiO2 three-component nanojunction system. Nature Mater. 5, 782–786 (2006).

    Article  ADS  Google Scholar 

  39. Reece Steven, Y. et al. Wireless solar water splitting using silicon-based semiconductors and earth-abundant catalysts. Science 334, 645–648 (2011).

    Article  ADS  Google Scholar 

  40. Khaselev, O. & Turner, J. A. A monolithic photovoltaic–photoelectrochemical device for hydrogen production via water splitting. Science 280, 425–427 (1998).

    Article  ADS  Google Scholar 

  41. Rocheleau, R. E., Miller, E. L. & Misra, A. High-efficiency photoelectrochemical hydrogen production using multijunction amorphous silicon photoelectrodes. Energy Fuels 12, 3–10 (1998).

    Article  Google Scholar 

  42. Kubacka, A., Fernandez-Garcia, M. & Colon, G. Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2012).

    Article  Google Scholar 

  43. Valdes, A. et al. Solar hydrogen production with semiconductor metal oxides: New directions in experiment and theory. Phys. Chem. Chem. Phys. 14, 49–70 (2012).

    Article  Google Scholar 

  44. Xing, J., Fang, W. Q., Zhao, H. J. & Yang, H. G. Inorganic photocatalysts for overall water splitting. Chem. Asian J. 7, 642–657 (2012).

    Article  Google Scholar 

  45. Shen, S., Shi, J., Guo, P. & Guo, L. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 8, 523–591 (2011).

    Article  ADS  Google Scholar 

  46. Osterloh, F. E. & Parkinson, B. A. Recent developments in solar water-splitting photocatalysis. MRS Bull. 36, 17–22 (2011).

    Article  Google Scholar 

  47. Tributsch, H. Photovoltaic hydrogen generation. Int. J. Hydrogen Energ. 33, 5911–5930 (2008).

    Article  Google Scholar 

  48. Sahaym, U. & Norton, M. G. Advances in the application of nanotechnology in enabling a 'hydrogen economy'. J. Mater. Sci. 43, 5395–5429 (2008).

    Article  ADS  Google Scholar 

  49. Henderson, M. A. A surface science perspective on TiO2 photocatalysis. Surf. Sci. Rep. 66, 185–297 (2011).

    Article  ADS  Google Scholar 

  50. Sun, J., Zhong, D. K. & Gamelin, D. R. Composite photoanodes for photoelectrochemical solar water splitting. Energ. Environ. Sci. 3, 1252–1261 (2010).

    Article  Google Scholar 

  51. Vayssieres, L. (ed.) On Solar Hydrogen & Nanotechnology (Wiley, 2009).

    Google Scholar 

  52. Zini, G. & Tartarini, P. Solar Hydrogen Energy Systems: Science and Technology for the Hydrogen Economy (Springer, 2012).

    Book  Google Scholar 

  53. Grimes, C. A. Light, Water, Hydrogen: The Solar Generation of Hydrogen by Water Photoelectrolysis (Springer, 2007).

    Google Scholar 

  54. Rajeshwar, K., McConnell, R. & Licht, S. (eds) Solar Hydrogen Generation: Toward a Renewable Energy Future (Springer, 2010).

    Google Scholar 

  55. Guo, J. & Chen, X. Solar Hydrogen Generation: Transition Metal Oxides in Water Photoelectrolysis (McGraw Hill, 2012).

    Google Scholar 

  56. Chouhan, N. Photoelectrochemical cells for hydrogen generation in Electrochemical Technologies for Energy Storage and Conversion (ed. Zhang, J. Z.) 539–597 (Wiley, 2011).

    Google Scholar 

  57. Vayssieres, L. On the effect of nanoparticle size on water-oxide interfacial chemistry. J. Phys. Chem. C 113, 4733–4736 (2009).

    Article  Google Scholar 

  58. Kronawitter, C. X. et al. TiO2–SnO2:F interfacial electronic structure investigated by soft X-ray absorption spectroscopy. Phys. Rev. B 85, 125109 (2012).

    Article  ADS  Google Scholar 

  59. Kronawitter, C. X. et al. Electron enrichment in 3d transition metal oxide hetero-nanostructures. Nano. Lett. 11, 3855–3861 (2011).

    Article  ADS  Google Scholar 

  60. Boettcher, S. W. et al. Energy-conversion properties of vapor–liquid–solid-grown silicon wire-array photocathodes. Science 327, 185–187 (2010).

    Article  ADS  Google Scholar 

  61. Kay, A., Cesar, I. & Grätzel, M. New benchmark for water photooxidation by nanostructured alpha-Fe2O3 films. J. Am. Chem. Soc. 128, 15714–15721 (2006).

    Article  Google Scholar 

  62. Vayssieres, L., Persson, C. & Guo, J. H. Size effect on the conduction band orbital character of anatase TiO2 nanocrystals. Appl. Phys. Lett. 99, 183101 (2011).

    Article  ADS  Google Scholar 

  63. Linic, S., Christopher, P. & Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nature Mater. 10, 911–921 (2011).

    Article  ADS  Google Scholar 

  64. Warren, S. C. & Thimsen, E. Plasmonic solar water splitting. Energ. Environ. Sci. 5, 5133–5146 (2012).

    Article  Google Scholar 

  65. Solarska, R., Krolikowska, A. & Augustynski, J. Silver nanoparticle induced photocurrent enhancement at WO3 photoanodes. Angew. Chem. Int. Ed. 49, 7980–7983 (2010).

    Article  Google Scholar 

  66. Vayssieres, L. et al. One-dimensional quantum-confinement effect in α-Fe2O3 ultrafine nanorod arrays. Adv. Mater. 17, 2320–2323 (2005).

    Article  Google Scholar 

  67. Luque, A., Marti, A. & Stanley, C. Understanding intermediate-band solar cells. Nature Photon. 6, 146–152 (2012).

    Article  ADS  Google Scholar 

  68. Vayssieres, L. (ed.) On Solar Hydrogen & Nanotechnology 523–558 (Wiley, 2009).

    Google Scholar 

  69. Chen, H. M. et al. Quantum dot monolayer sensitized ZnO nanowire-array photoelectrodes: True efficiency for water splitting. Angew. Chem. Int. Ed. 49, 5966–5969 (2010).

    Article  Google Scholar 

  70. Chen, H. M. et al. A new approach to solar hydrogen production: A ZnO–ZnS solid solution nanowire array photoanode. Adv. Energy Mater. 1, 742–747 (2011).

    Article  Google Scholar 

  71. Chen, X., Liu, L., Yu, P. Y. & Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011).

    Article  ADS  Google Scholar 

  72. Wang, G. et al. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting. Nano. Lett. 11, 3026–3033 (2011).

    Article  ADS  Google Scholar 

  73. Wang, G. et al. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energ. Environ. Sci. 5, 6180–6187 (2011).

    Article  Google Scholar 

  74. Mao, S. S. High throughput combinatorial screening of semiconductor materials. Appl. Phys. A 105, 283–288 (2011).

    Article  ADS  Google Scholar 

  75. He, J. & Parkinson, B. A. Combinatorial investigation of the effects of the incorporation of Ti, Si, and Al on the performance of α-Fe2O3 photoanodes. ACS Comb. Sci. 13, 399–404 (2011).

    Article  Google Scholar 

  76. Greeley, J., Jaramillo, T. F., Bonde, J., Chorkendorff, I. B. & Norskov, J. K. Computational high-throughput screening of electrocatalytic materials for hydrogen evolution. Nature Mater. 5, 909–913 (2006).

    Article  ADS  Google Scholar 

  77. Beermann, N., Vayssieres, L., Lindquist, S.-E. & Hagfeldt, A. Photoelectrochemical studies of oriented nanorod thin films of hematite. J. Electrochem. Soc. 147, 2456–2461 (2000).

    Article  Google Scholar 

  78. Vayssieres, L., Beermann, N., Lindquist, S.-E. & Hagfeldt, A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron (III) oxides. Chem. Mater. 13, 233–235 (2001).

    Article  Google Scholar 

  79. Lin, Y., Yuan, G., Sheehan, S., Zhou, S. & Wang, D. Hematite-based solar water splitting: Challenges and opportunities. Energ. Environ. Sci. 4, 4862–4869 (2011).

    Article  Google Scholar 

  80. Sivula, K., Le Formal, F. & Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. Chem. Sus. Chem. 4, 432–449 (2011).

    Article  Google Scholar 

  81. Cummings, C. Y., Marken, F., Peter, L. M., Wijayantha, K. G. U. & Tahir, A. A. New insights into water splitting at mesoporous α-Fe2O3 films: A study by modulated transmittance and impedance spectroscopies. J. Am. Chem. Soc. 134, 1228–1234 (2012).

    Article  Google Scholar 

  82. Haederle, M. Solar showdown in Miller-McCune (May/June 2011).

    Google Scholar 

  83. Braham, R. J. & Harris, A. T. Review of major design and scale-up considerations for solar photocatalytic reactors. Ind. Eng. Chem. Res. 48, 8890–8905 (2009).

    Article  Google Scholar 

  84. Christopher, K. & Dimitrios, R. A review on exergy comparison of hydrogen production methods from renewable energy sources. Energ. Environ. Sci. 5, 6640–6651 (2012).

    Article  Google Scholar 

  85. Dahl, S. & Chorkendorff, I. Solar-fuel generation. Towards practical implementation. Nature Mater. 11, 100–101 (2012).

    Article  ADS  Google Scholar 

  86. Lomoth, R. et al. Mimicking the electron donor side of Photosystem II in artificial photosynthesis. Photosynth. Res. 87, 25–40 (2006).

    Article  Google Scholar 

  87. Jiao, F. & Frei, H. Nanostructured cobalt and manganese oxide clusters as efficient water oxidation catalysts. Energ. Environ. Sci. 3, 1018–1027 (2010).

    Article  Google Scholar 

  88. Peter, L. M., Wijayantha, K. G. U. & Tahir, A. A. Kinetics of light-driven oxygen evolution at alpha-Fe2O3 electrodes. Faraday Discuss. 155, 309–322 (2012).

    Article  ADS  Google Scholar 

  89. Le Formal, F. et al. Passivating surface states on water splitting hematite photoanodes with alumina overlayers. Chem. Sci. 2, 737–743 (2011).

    Article  Google Scholar 

  90. Zhang, J. Z. Challenges and opportunities in light and electrical energy conversion. J. Phys. Chem. Lett. 2, 1351–1352 (2011).

    Article  Google Scholar 

  91. Pendlebury, S. R. et al. Dynamics of photogenerated holes in nanocrystalline alpha-Fe2O3 electrodes for water oxidation probed by transient absorption spectroscopy. Chem. Commun. 47, 716–718 (2011).

    Article  Google Scholar 

  92. Wang, X. et al. Trap states and carrier dynamics of TiO2 studied by photoluminescence spectroscopy under weak excitation condition. Phys. Chem. Chem. Phys. 12, 7083–7090 (2010).

    Article  Google Scholar 

  93. Tachibana, Y., Moser, J. E., Grätzel, M., Klug, D. R. & Durrant, J. R. Subpicosecond interfacial charge separation in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. 100, 20056–20062 (1996).

    Article  Google Scholar 

  94. Haque, S. A. et al. Parameters influencing charge recombination kinetics in dye-sensitized nanocrystalline titanium dioxide films. J. Phys. Chem. B 104, 538–547 (2000).

    Article  Google Scholar 

  95. Ardo, S. & Meyer, G. J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO2 semiconductor surfaces. Chem. Soc. Rev. 38, 115–164 (2009).

    Article  Google Scholar 

  96. Dare-Edwards, M. P., Goodenough, J. B., Hamnett, A. & Trevellick, P. R. Electrochemistry and photoelectrochemistry of iron(III) oxide. J. Chem. Soc. Faraday Trans. 179, 2027–2041 (1983).

    Article  Google Scholar 

  97. Hanna, M. C. & Nozik, A. J. Solar conversion efficiency of photovoltaic and photoelectrolysis cells with carrier multiplication absorbers. J. Appl. Phys. 100, 074510 (2006).

    Article  ADS  Google Scholar 

  98. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  99. Chen, Z. et al. Accelerating materials development for photoelectrochemical hydrogen production: Standards for methods, definitions, and reporting protocols. J. Mater. Res. 25, 3–16 (2010).

    Article  ADS  Google Scholar 

  100. Ekins, P. Hydrogen Energy (Earthscan, 2010).

    Google Scholar 

Download references

Acknowledgements

Y.T. acknowledges funding support from JST, PRESTO. L.V. acknowledges support from the International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xian Jiaotong University, the Thousand Talents plan and the National Natural Science Foundation of China (no. 51121092). J.R.D. acknowledges the EPSRC and European Research Council for funding. The authors thank J. Nolan and J. Fenn, Design and Production Educational Technology Advancement Group (EduTAG), RMIT University, for their support in the illustration of Fig. 5.

Author information

Authors and Affiliations

Authors

Contributions

Y.T. and L.V. contributed equally to this work. J.R.D. wrote the section on charge carrier dynamics and assisted in drafting other aspects of the manuscript. Y.T. organized the submission.

Corresponding authors

Correspondence to Yasuhiro Tachibana or Lionel Vayssieres.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tachibana, Y., Vayssieres, L. & Durrant, J. Artificial photosynthesis for solar water-splitting. Nature Photon 6, 511–518 (2012). https://doi.org/10.1038/nphoton.2012.175

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.175

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing