Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Broadband dye-sensitized upconversion of near-infrared light

Abstract

Photon upconversion of near-infrared photons is a promising way to overcome the Shockley–Queisser efficiency limit of 32% of a single-junction solar cell. However, the practical applicability of the most efficient known upconversion materials at moderate light intensities is limited by their extremely weak and narrowband near-infrared absorption. Here, we introduce the concept of an upconversion material where an organic near-infrared dye is used as an antenna for the β-NaYF4:Yb,Er nanoparticles in which the upconversion occurs. The overall upconversion by the dye-sensitized nanoparticles is dramatically enhanced (by a factor of 3,300) as a result of increased absorptivity and overall broadening of the absorption spectrum of the upconverter. The proposed concept can be extended to cover any part of the solar spectrum by using a set of dye molecules with overlapping absorption spectra acting as an extremely broadband antenna system, connected to suitable upconverters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principal concept of the dye-sensitized nanoparticle.
Figure 2: Absorption and emission spectra.
Figure 3: Upconversion emission intensities.
Figure 4: Upconversion photoluminescence intensity as a function of excitation power.
Figure 5: Upconversion action spectra.

Similar content being viewed by others

References

  1. Shockley, W. & Queisser, H. J. Detailed balance limit of efficiency of p–n junction solar cells. J. Appl. Phys. 32, 510–519 (1961).

    Article  ADS  Google Scholar 

  2. Conibeer, G. Third-generation photovoltaics. Mater. Today 10, 42–50 (2007).

    Article  Google Scholar 

  3. Wang, H.-Q., Batentschuk, M., Osvet, A., Pinna, L. & Brabec, C. J. Rare-earth ion doped up- conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011).

    Article  Google Scholar 

  4. Van der Ende, B. M., Aarts, L. & Meijerink, A. Lanthanide ions as spectral converters for solar cells. Phys. Chem. Chem. Phys. 11, 11081–11095 (2009).

    Article  Google Scholar 

  5. De Wild, J., Meijerink, A., Rath, J. K., van Sark, W. G. J. H. M. & Schropp, R. E. I. Upconverter solar cells: materials and applications. Energy Environ. Sci. 4, 4835–4848 (2011).

    Article  Google Scholar 

  6. Strümpel, C. et al. Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol. Energy Mater. Sol. Cells 91, 238–249 (2007).

    Article  Google Scholar 

  7. Trupke, T., Shalav, A., Richards, B. S., Würfel, P. & Green, M. A. Efficiency enhancement of solar cells by luminescent up-conversion of sunlight. Sol. Energy Mater. Sol. Cells 90, 3327–3338 (2006).

    Article  Google Scholar 

  8. Shalav, A., Richards, B. S., Trupke, T., Kramer, K. W. & Gudel, H. U. Application of NaYF4:Er3+ up-converting phosphors for enhanced near-infrared silicon solar cell response. Appl. Phys. Lett. 86, 013505 (2005).

    Article  ADS  Google Scholar 

  9. Shan, G.-B. & Demopoulos, G. P. Near-infrared sunlight harvesting in dye-sensitized solar cells via the insertion of an upconverter-TiO2 nanocomposite layer. Adv. Mater. 22, 4373–4377 (2010).

    Article  Google Scholar 

  10. De Wild, J., Rath, J. K., Meijerink, A., van Sark, W. G. J. H. M. & Schropp, R. E. I. Enhanced near-infrared response of a-Si:H solar cells with β-NaYF4:Yb3+ (18%), Er3+ (2%) upconversion phosphors. Sol. Energy Mater. Sol. Cells 94, 2395–2398 (2010).

    Article  Google Scholar 

  11. Fischer, S. et al. Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization. J. Appl. Phys. 108, 044912 (2010).

    Article  ADS  Google Scholar 

  12. Shalav, A., Richards, B. S. & Green, M. A. Luminescent layers for enhanced silicon solar cell performance: up-conversion. Sol. Energy Mater. Sol. Cells 91, 829–842 (2007).

    Article  Google Scholar 

  13. Haase, M. & Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Ed. 50, 5808–5829 (2011).

    Article  Google Scholar 

  14. Baluschev, S. et al. Up-conversion fluorescence: noncoherent excitation by sunlight. Phys. Rev. Lett. 97, 143903–06 (2006).

    Article  ADS  Google Scholar 

  15. Baluschev, S. et al. A general approach for non-coherently excited annihilation up-conversion: transforming the solar-spectrum. New J. Phys. 10, 013007 (2008).

    Article  Google Scholar 

  16. Cheng, Y. Y. et al. Improving the light-harvesting of amorphous silicon solar cells with photochemical upconversion. Energy Environ. Sci. 5, 6953–6959 (2012).

    Article  Google Scholar 

  17. Boyer, J.-Ch. & van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles, Nanoscale 2, 1417–1419 (2010).

    Article  ADS  Google Scholar 

  18. Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 104, 139–173 (2004).

    Article  Google Scholar 

  19. Wang, F. & Liu, X. Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals. Chem. Soc. Rev. 38, 976–989 (2009).

    Article  Google Scholar 

  20. Gamelin, D. R. & Güdel, H. U. Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy. Acc. Chem. Res. 33, 235–242 (2000).

    Article  Google Scholar 

  21. Verhagen E., Kuipers, L. & Polman A. Enhanced nonlinear optical effects with a tapered plasmonic waveguide. Nano Lett. 7, 334–337 (2007).

    Article  ADS  Google Scholar 

  22. Rai, V. K. et al. Frequency upconversion in a Pr3+ doped chalcogenide glass containing silver nanoparticles. J. Appl. Phys. 103, 093526 (2008).

    Article  ADS  Google Scholar 

  23. Kassab, L. R. P. et al. Energy transfer and frequency upconversion in Yb3+–Er3+-doped PbO–GeO2 glass containing silver nanoparticles. Appl. Phys. B 94, 239–242 (2009).

    Article  ADS  Google Scholar 

  24. Schietinger, S., Aichele, T., Wang, H., Nann, T. & Benson, O. Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 10, 134–138 (2010).

    Article  ADS  Google Scholar 

  25. Zhang, H. et al. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010).

    Article  Google Scholar 

  26. Sudheendra, L., Ortalan, V., Dey, S., Browning, N. D. & Kennedy, I. M. Plasmonic enhanced emissions from cubic NaYF4:Yb:Er/Tm nanophosphors. Chem. Mater. 23, 2987–2993 (2011).

    Article  Google Scholar 

  27. Liu, N., Qin, W., Qin, G., Jiang, T. & Zhao, D. Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4:Yb,Tm hybrid nanostructures. Chem. Commun. 47, 7671–7673 (2011)

    Article  Google Scholar 

  28. Blankenship, R. E. Molecular Mechanisms of Photosynthesis (Blackwell Science, 2002).

    Book  Google Scholar 

  29. Yi, G. S. & Chow, G. M. Synthesis of hexagonal-phase NaYF4:Yb,Er and NaYF4:Yb,Tm nanocrystals with efficient up-conversion fluorescence. Adv. Funct. Mater. 16, 2324–2329 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

J.C.H., W.Z. and C.V. acknowledge financial support from the Joint Solar Programme (JSP 1) of the Stichting voor Fundamenteel Onderzoek der Materie (FOM). The authors thank M.C.A. Stuart for TEM measurements of the nanoparticles and H.M.M. Hesp for assistance with laser spectroscopy. This is the first publication by the FOM Focus Group Groningen, participating in the Dutch Institute for Fundamental Energy Research (DIFFER).

Author information

Authors and Affiliations

Authors

Contributions

W.Z., C.V. and J.A.M. were responsible for the experimental work. J.C.H. conceived the project. J.C.H. and M.S.P. supervised the research. All authors discussed the results. The manuscript was written by W.Z., M.S.P. and J.C.H.

Corresponding author

Correspondence to Jan C. Hummelen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 1609 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, W., Visser, C., Maduro, J. et al. Broadband dye-sensitized upconversion of near-infrared light. Nature Photon 6, 560–564 (2012). https://doi.org/10.1038/nphoton.2012.158

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.158

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing