Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Regenerative oscillation and four-wave mixing in graphene optoelectronics

Abstract

The unique linear and massless band structure of graphene in a purely two-dimensional Dirac fermionic structure has led to intense research in fields ranging from condensed matter physics to nanoscale device applications covering the electrical, thermal, mechanical and optical domains. Here, we report three consecutive first observations in graphene–silicon hybrid optoelectronic devices—ultralow-power resonant optical bistability, self-induced regenerative oscillations and coherent four-wave mixing—all at few-femtojoule cavity recirculating energies. These observations, in comparison with control measurements on solely monolithic silicon cavities, are enabled only by the dramatically large and ultrafast χ(3) nonlinearities in graphene and the large Q/V ratios in wavelength-localized photonic crystal cavities. These third-order nonlinear results demonstrate the feasibility and versatility of hybrid two-dimensional graphene–silicon nanophotonic devices for next-generation chip-scale high-speed optical communications, radiofrequency optoelectronics and all-optical signal processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Graphene-clad silicon photonic crystal nanostructures.
Figure 2: Bistable switching in graphene-clad nanocavities.
Figure 3: Regenerative oscillations in graphene-clad nanocavities.
Figure 4: Parametric four-wave mixing in graphene-clad silicon nanocavities.

Similar content being viewed by others

References

  1. Xu, Q., Schmidt, B., Pradhan, S. & Lipson, M. Micrometre-scale silicon electro-optic modulator. Nature 435, 325–327 (2005).

    Article  ADS  Google Scholar 

  2. Liu, A. et al. A high-speed silicon optical modulator based on a metal–oxide–semiconductor capacitor. Nature 427, 615–618 (2005).

    Article  ADS  Google Scholar 

  3. Liu, J. et al. Waveguide-integrated, ultralow-energy GeSi electro-absorption modulators. Nature Photon. 2, 433–437 (2008).

    Article  ADS  Google Scholar 

  4. Kuo, Y.-H. et al. Strong quantum-confined Stark effect in germanium quantum-well structures on silicon. Nature 437, 1334–1336 (2005).

    Article  ADS  Google Scholar 

  5. Assefa, S., Xia, F. & Vlasov, Y. A. Reinventing germanium avalanche photodetector for nanophotonic on-chip optical interconnects. Nature 464, 80–84 (2010).

    Article  ADS  Google Scholar 

  6. Kang, Y. et al. Monolithic germanium/silicon avalanche photodiodes with 340 GHz gain–bandwidth product. Nature Photon. 3, 59–63 (2009).

    Article  ADS  Google Scholar 

  7. Biberman, A. et al. First demonstration of long-haul transmission using silicon microring modulators. Opt. Express 18, 15544–15552 (2010).

    Article  ADS  Google Scholar 

  8. Pelusi, M. et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photon. 3, 139–143 (2009).

    Article  ADS  Google Scholar 

  9. Colman, P. et al. Temporal solitons and pulse compression in photonic crystal waveguides. Nature Photon. 4, 862–868 (2010).

    Article  ADS  Google Scholar 

  10. Morichetti, F. et al. Travelling-wave resonant four-wave mixing breaks the limits of cavity-enhanced all-optical wavelength conversion. Nature Commun. 2, 296 (2011).

    Article  Google Scholar 

  11. Foster, M. et al. Silicon-chip-based ultrafast optical oscilloscope. Nature 456, 81–84 (2008).

    Article  ADS  Google Scholar 

  12. Pasquazi, A. M. et al. Sub-picosecond phase-sensitive optical pulse characterization on a chip. Nature Photon. 5, 618–623 (2011).

    Article  ADS  Google Scholar 

  13. Zhang, Y., Tan, Y.-W., Stormer, H. L. & Kim, P. Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 438, 201–204 (2005).

    Article  ADS  Google Scholar 

  14. Geim, A. K. & Novoselov, K. S. The rise of graphene. Nature Mater. 6, 183–191 (2007).

    Article  ADS  Google Scholar 

  15. Du, X. et al. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 462, 192–195 (2009).

    Article  ADS  Google Scholar 

  16. Dean, C. R. et al. Multicomponent fractional quantum Hall effect in graphene. Nature Phys. 7, 693–696 (2011).

    Article  ADS  Google Scholar 

  17. Berger, C. et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 312, 1191–1196 (2006).

    Article  ADS  Google Scholar 

  18. Meric, I. et al. Current saturation in zero-bandgap, top-gated graphene field-effect transistors. Nature Nanotech. 3, 654–659 (2008).

    Article  ADS  Google Scholar 

  19. Lin, Y.-M. et al. 100-GHz transistors from wafer-scale epitaxial graphene. Science 327, 662 (2010).

    Article  ADS  Google Scholar 

  20. Seol, J. H. et al. Two-dimensional phonon transport in supported graphene. Science 328, 213–216 (2010).

    Article  ADS  Google Scholar 

  21. Gabor, N. M. et al. Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011).

    Article  ADS  Google Scholar 

  22. Lee, C., Wei, X., Kysar, J. W. & Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385–388 (2008).

    Article  ADS  Google Scholar 

  23. Bonaccorso, F., Sun, Z., Hasan, T. & Ferrari, A. C. Graphene photonics and optoelectronics. Nature Photon. 4, 611–622 (2010).

    Article  ADS  Google Scholar 

  24. Chen, C.-F. et al. Controlling inelastic light scattering quantum pathways in graphene. Nature 471, 617–620 (2011).

    Article  ADS  Google Scholar 

  25. Wang, F. et al. Gate-variable optical transitions in graphene. Science 320, 206–209 (2008).

    Article  ADS  Google Scholar 

  26. Li, Z. Q. et al. Dirac charge dynamics in graphene by infrared spectroscopy. Nature Phys. 4, 532–535 (2008).

    Article  ADS  Google Scholar 

  27. Liu, M. et al. A graphene-based broadband optical modulator. Nature 474, 64–67 (2011).

    Article  ADS  Google Scholar 

  28. Mueller, T., Xia, F. & Avouris, P. Graphene photodetectors for high-speed optical communications. Nature Photon. 4, 297–301 (2010).

    Article  Google Scholar 

  29. Xia, F. et al. Ultrafast graphene photodetector. Nature Nanotech. 4, 839–843 (2009).

    Article  ADS  Google Scholar 

  30. Engel, M. et al. Light–matter interaction in a microcavity-controlled graphene transistor. Nature Commun. 3, 906 (2012).

    Article  Google Scholar 

  31. Furchi, M. et al. Microcavity-integrated graphene photodetector. Nano Lett. 12, 2773–2777 (2012).

    Article  ADS  Google Scholar 

  32. Sun, Z. et al. Graphene mode-locked ultrafast laser. ACS Nano 4, 803–810 (2010).

    Article  Google Scholar 

  33. Hendry, E. et al. Coherent nonlinear optical response of graphene. Phys. Rev. Lett. 105, 097401 (2010).

    Article  ADS  Google Scholar 

  34. Li, X. et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 324, 1312–1314 (2009).

    Article  ADS  Google Scholar 

  35. Bae, S. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature Nanotech. 5, 574–578 (2010).

    Article  ADS  Google Scholar 

  36. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    Article  ADS  Google Scholar 

  37. Akahane, Y., Asano, T., Song, B. & Noda S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  38. Yang, X., Yu, M., Kwong, D.-L. & Wong, C. W. All-optical analogue to electromagnetically induced transparency in multiple coupled photonic crystal cavities. Phys. Rev. Lett. 102, 173902 (2009).

    Article  ADS  Google Scholar 

  39. Dean, C. R. et al. Boron nitride substrate for high-quality graphene electronics. Nature Nanotech. 5, 722–726 (2010).

    Article  ADS  Google Scholar 

  40. Petrone, N. et al. High-mobility scalable graphene by large-grain chemical vapor deposition growth. Nano Lett. 12, 2751–2756 (2012).

    Article  ADS  Google Scholar 

  41. Zhao, W., Tan, P. H., Liu, J. & Ferrari, A. C., Intercalation of few-layer graphite flakes with FeCl3: Raman determination of Fermi level, layer by layer decoupling and stability. J. Am. Chem. Soc. 133, 5941–5946 (2011).

    Article  Google Scholar 

  42. Jablan, M., Buljan, H. & Soljačić, M. Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  ADS  Google Scholar 

  43. Bao, Q. et al. Broadband graphene polarizer. Nature Photon. 5, 411–415 (2011).

    Article  ADS  Google Scholar 

  44. Armaroli, A. et al. Oscillatory dynamics in nanocavities with noninstantaneous Kerr response. Phys. Rev. A 84, 053816 (2011).

    Article  ADS  Google Scholar 

  45. Johnson, T. J., Borselli, M. & Painter, O. Self-induced optical modulation of the transmission through a high-Q silicon microdisk resonator. Opt. Express 14, 817–831 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge valuable discussions with T.F. Heinz, as well as helpful suggestions from A. Gondarenko, F. Gesuele, Y. Li, J. Lui and J. Yang. The authors acknowledge funding support from NSF IGERT (DGE-1069240) and the Center for Re-Defining Photovoltaic Efficiency through Molecule Scale Control, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences (award no. DE-SC0001085).

Author information

Authors and Affiliations

Authors

Contributions

T.G. and J.F.M. performed the experiments. T.G., N.P., A.V.D.Z. and J.H. prepared the graphene transfer and synthesis. M.Y., G.Q.L. and D.L.K. nanofabricated the membrane samples. T.G. and C.W.W. performed the numerical simulations. T.G. and C.W.W. prepared the manuscript.

Corresponding authors

Correspondence to T. Gu or C. W. Wong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 2134 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gu, T., Petrone, N., McMillan, J. et al. Regenerative oscillation and four-wave mixing in graphene optoelectronics. Nature Photon 6, 554–559 (2012). https://doi.org/10.1038/nphoton.2012.147

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing