Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mid-infrared frequency combs

This Review discusses the emerging field of mid-infrared frequency comb generation, including technologies based on novel laser gain media, nonlinear frequency conversion and microresonators, as well as the applications of these combs in precision spectroscopy and direct frequency comb spectroscopy.

Abstract

Laser frequency combs are coherent light sources that emit a broad spectrum of discrete, evenly spaced narrow lines whose absolute frequency can be measured to within the accuracy of an atomic clock. Their development in the near-infrared and visible domains has revolutionized frequency metrology while also providing numerous unexpected opportunities in other fields such as astronomy and attosecond science. Researchers are now exploring how to extend frequency comb techniques to the mid-infrared spectral region. Versatile mid-infrared frequency comb generators based on novel laser gain media, nonlinear frequency conversion or microresonators promise to significantly expand the applications of frequency combs. In particular, novel approaches to molecular spectroscopy in the 'fingerprint region', with dramatically improved precision, sensitivity, recording time and/or spectral bandwidth may lead to new discoveries in the various fields relevant to molecular science.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Molecular mid-infrared fingerprints and the principle of the laser frequency comb.
Figure 2: Approaches to frequency comb generation in the mid-infrared.
Figure 3: Spectral coverage of different approaches and materials.
Figure 4: Typical mid-infrared spectra obtained through different approaches.
Figure 5: Frequency comb as a frequency ruler.
Figure 6: Frequency comb Fourier transform spectroscopy.

Similar content being viewed by others

References

  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    ADS  Google Scholar 

  2. Cundiff, S. T. & Ye, J. Colloquium: Femtosecond optical frequency combs. Rev. Mod. Phys. 75, 325–342 (2003).

    Article  ADS  Google Scholar 

  3. Ye, J. & Cundiff, S. T. (eds) Femtosecond Optical Frequency Comb: Principle, Operation and Applications (Springer, 2005).

    Google Scholar 

  4. Hall, J. L. Nobel Lecture: Defining and measuring optical frequencies. Rev. Mod. Phys. 78, 1279–1295 (2006).

    ADS  Google Scholar 

  5. Hänsch, T. W. Nobel Lecture: Passion for precision. Rev. Mod. Phys. 78, 1297–1309 (2006).

    ADS  Google Scholar 

  6. Diddams, S. A. The evolving optical frequency comb. J. Opt. Soc. Am. B 27, B51–B62 (2010).

    Google Scholar 

  7. Page, R. H. et al. Cr2+-doped zinc chalcogenides as efficient, widely tunable mid-infrared lasers. IEEE J. Quant. Electron. 33, 609–619 (1997).

    ADS  Google Scholar 

  8. Sorokina, I. T. Crystalline mid-infrared lasers. Top. Appl. Phys. 89, 255–349 (2003).

    Google Scholar 

  9. Sorokin, E., Naumov, S. & Sorokina, I. T. Ultrabroadband infrared solid-state lasers. IEEE J. Sel. Top. Quant. Electron. 11, 690–712 (2005).

    ADS  Google Scholar 

  10. Mirov, S. B. et al. Progress in mid-IR Cr2+ and Fe2+ doped II–VI materials and lasers Invited. Opt. Mater. Express 1, 898–910 (2011).

    ADS  Google Scholar 

  11. Sorokin, E., Sorokina, I. T., Mandon, J., Guelachvili, G. & Picqué, N. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 μm region with a Cr2+:ZnSe femtosecond laser. Opt. Express 15, 16540–16545 (2007).

    ADS  Google Scholar 

  12. Cizmeciyan, M. N., Cankaya, H., Kurt, A. & Sennaroglu, A. Kerr-lens mode-locked femtosecond Cr2+:ZnSe laser at 2420 nm. Opt. Lett. 34, 3056–3058 (2009).

    ADS  Google Scholar 

  13. Slobodtchikov, E. & Moulton, P. Progress in ultrafast Cr:ZnSe lasers in Lasers, Sources, and Related Photonic Devices paper AW5A.4 (OSA, 2012).

    Google Scholar 

  14. Sorokin, E., Tolstik, N. & Sorokina, I. Kerr-lens mode-locked Cr:ZnS laser in Lasers, Sources, and Related Photonic Devices paper AW5A.5 (OSA, 2012).

    Google Scholar 

  15. Bernhardt, B. et al. Mid-infrared dual-comb spectroscopy with 2.4 μm Cr2+:ZnSe femtosecond lasers. Appl. Phys. B 100, 3–8 (2010).

    ADS  Google Scholar 

  16. Fedorov, V. V. et al. 3.77–5.05 μm tunable solid-state lasers based on Fe2+-doped ZnSe crystals operating at low and room temperatures. IEEE J. Quant. Electron. 42, 907–917 (2006).

    ADS  Google Scholar 

  17. Frolov, M. P. et al. Laser radiation tunable within the range of 4.35–5.45 μm in a ZnTe crystal doped with Fe2+ ions. J. Russ. Laser. Res. 32, 528–536 (2011).

    Google Scholar 

  18. Kozlovsky, V. I. et al. Pulsed Fe2+:ZnS laser continuously tunable in the wavelength range of 3.49–4.65 μm. Quantum Electron. 41, 1–3 (2011).

    ADS  Google Scholar 

  19. Pollnau, M. & Jackson, S. D. in Topics in Applied Physics Vol. 89 (eds Sorokina, I. & Vodopyanov, K.) 219–255 (Springer, 2003).

    Google Scholar 

  20. Nelson, L. E., Ippen, E. P. & Haus, H. A. Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser. Appl. Phys. Lett. 67, 19–21 (1995).

    ADS  Google Scholar 

  21. Solodyankin, M. A. et al. Mode-locked 1.93 μm thulium fiber laser with a carbon nanotube absorber. Opt. Lett. 33, 1336–1338 (2008).

    ADS  Google Scholar 

  22. Kieu, K. & Wise, F. W. Soliton thulium-doped fiber laser with carbon nanotube saturable absorber. IEEE Photon. Tech. Lett. 21, 128–130 (2009).

    ADS  Google Scholar 

  23. Haxsen, F., Wandt, D., Morgner, U., Neumann, J. & Kracht, D. Pulse characteristics of a passively mode-locked thulium fiber laser with positive and negative cavity dispersion. Opt. Express 18, 18981–18988 (2010).

    ADS  Google Scholar 

  24. Wang, Q., Geng, J. H., Jiang, Z., Luo, T. & Jiang, S. B. Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm. IEEE Photon. Tech. Lett. 23, 682–684 (2011).

    ADS  Google Scholar 

  25. Phillips, C. R. et al. Supercontinuum generation in quasi-phase-matched LiNbO3 waveguide pumped by a Tm-doped fiber laser system. Opt. Lett. 36, 3912–3914 (2011).

    ADS  Google Scholar 

  26. Adler, F. & Diddams, S. A. High-power, hybrid Er:fiber/Tm:fiber frequency comb source in the 2 μm wavelength region. Opt. Lett. 37, 1400–1402 (2012).

    ADS  Google Scholar 

  27. Coluccelli, N. et al. 1.6-W self-referenced frequency comb at 2.06 μm using a Ho:YLF multipass amplifier. Opt. Lett. 36, 2299–2301 (2011).

    ADS  Google Scholar 

  28. Hofstetter, D. & Faist, J. High performance quantum cascade lasers and their applications. Top. Appl. Phys. 89, 61–96 (2003).

    Google Scholar 

  29. Paiella, R. et al. Self-mode-locking of quantum cascade lasers with giant ultrafast optical nonlinearities. Science 290, 1739–1742 (2000).

    ADS  Google Scholar 

  30. Wang, C. Y. et al. Mode-locked pulses from mid-infrared quantum cascade lasers. Opt. Express 17, 12929–12943 (2009).

    Article  ADS  Google Scholar 

  31. Fischer, C. & Sigrist, M. W. Mid-IR difference frequency generation. Top. Appl. Phys. 89, 97–140 (2003).

    Google Scholar 

  32. Maddaloni, P., Malara, P., Gagliardi, G. & De Natale, P. Mid-infrared fibre-based optical comb. New J. Phys. 8, 262 (2006).

    ADS  Google Scholar 

  33. Baumann, E. et al. Spectroscopy of the methane ν3 band with an accurate midinfrared coherent dual-comb spectrometer. Phys. Rev. A 84, 062513 (2011).

    ADS  Google Scholar 

  34. Foreman, S. M., Jones, D. J. & Ye, J. Flexible and rapidly configurable femtosecond pulse generation in the mid-IR. Opt. Lett. 28, 370–372 (2003).

    ADS  Google Scholar 

  35. Foreman, S. M. et al. Demonstration of a HeNe/CH4-based optical molecular clock. Opt. Lett. 30, 570–572 (2005).

    ADS  Google Scholar 

  36. Erny, C. et al. Mid-infrared difference-frequency generation of ultrashort pulses tunable between 3.2 and 4.8 μm from a compact fiber source. Opt. Lett. 32, 1138–1140 (2007).

    ADS  Google Scholar 

  37. Gubin, M. A. et al. Femtosecond fiber laser based methane optical clock. Appl. Phys. B 95, 661–666 (2009).

    ADS  Google Scholar 

  38. Sell, A., Scheu, R., Leitenstorfer, A. & Huber, R. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz. Appl. Phys. Lett. 93, 251107 (2008).

    ADS  Google Scholar 

  39. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    ADS  Google Scholar 

  40. Schliesser, A., Brehm, M., Keilmann, F. & van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    ADS  Google Scholar 

  41. Gambetta, A., Ramponi, R. & Marangoni, M. Mid-infrared optical combs from a compact amplified Er-doped fiber oscillator. Opt. Lett. 33, 2671–2673 (2008).

    ADS  Google Scholar 

  42. Keilmann, F. & Amarie, S. Mid-infrared frequency comb spanning an octave based on an Er fiber laser and difference-frequency generation. J. Infrared Millim. Te. 33, 479–484 (2012).

    Google Scholar 

  43. Ruehl, A. et al. Widely-tunable mid-IR frequency comb source based on difference frequency generation. Opt. Lett. 37, 2232–2234 (2012).

    ADS  Google Scholar 

  44. Ebrahimzadeh, M. in Topics in Applied Physics Vol. 89 (eds Sorokina, I. & Vodopyanov, K.) 179–218 (Springer, 2003).

    Google Scholar 

  45. Vodopyanov, K. in Topics in Applied Physics Vol. 89 (eds Sorokina, I. & Vodopyanov, K.) 141–178 (Springer, 2003).

    Google Scholar 

  46. Reid, D. T., Gale, B. J. S. & Sun, J. Frequency comb generation and carrier–envelope phase control in femtosecond optical parametric oscillators. Laser Phys. 18, 87–103 (2008).

    ADS  Google Scholar 

  47. Sun, J. H., Gale, B. J. S. & Reid, D. T. Composite frequency comb spanning 0.4–2.4 μm from a phase-controlled femtosecond Ti:sapphire laser and synchronously pumped optical parametric oscillator. Opt. Lett. 32, 1414–1416 (2007).

    ADS  Google Scholar 

  48. Adler, F. et al. Phase-stabilized, 1.5 W frequency comb at 2.8–4.8 μm. Opt. Lett. 34, 1330–1332 (2009).

    ADS  Google Scholar 

  49. Wong, S. T., Vodopyanov, K. L. & Byer, R. L. Self-phase-locked divide-by-2 optical parametric oscillator as a broadband frequency comb source. J. Opt. Soc. Am. B 27, 876–882 (2010).

    ADS  Google Scholar 

  50. Leindecker, N., Marandi, A., Byer, R. L. & Vodopyanov, K. L. Broadband degenerate OPO for mid-infrared frequency comb generation. Opt. Express 19, 6304–6310 (2011).

    ADS  Google Scholar 

  51. Leindecker, N. et al. Octave-spanning ultrafast OPO with 2.6–6.1 μm instantaneous bandwidth pumped by femtosecond Tm-fiber laser. Opt. Express 20, 7046–7053 (2012).

    ADS  Google Scholar 

  52. Vodopyanov, K. L., Sorokin, E., Sorokina, I. T. & Schunemann, P. G. Mid-IR frequency comb source spanning 4.4–5.4 μm based on subharmonic GaAs optical parametric oscillator. Opt. Lett. 36, 2275–2277 (2011).

    ADS  Google Scholar 

  53. Savchenkov, A. A. et al. Low threshold optical oscillations in a whispering gallery mode CaF2 resonator. Phys. Rev. Lett. 93, 243905 (2004).

    ADS  Google Scholar 

  54. Del'Haye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    ADS  Google Scholar 

  55. Kippenberg, T. J., Spillane, S. M. & Vahala, K. J. Kerr-nonlinearity optical parametric oscillation in an ultrahigh-Q toroid microcavity. Phys. Rev. Lett. 93, 083904 (2004).

    ADS  Google Scholar 

  56. Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    ADS  Google Scholar 

  57. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    ADS  Google Scholar 

  58. Domachuk, P. et al. Over 4000 nm bandwidth of mid-IR supercontinuum generation in sub-centimeter segments of highly nonlinear tellurite PCFs. Opt. Express 16, 7161–7168 (2008).

    ADS  Google Scholar 

  59. Yeom, D. I. et al. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett. 33, 660–662 (2008).

    ADS  Google Scholar 

  60. Kuyken, B. et al. Mid-infrared to telecom-band supercontinuum generation in highly nonlinear silicon-on-insulator wire waveguides. Opt. Express 19, 20172–20181 (2011).

    ADS  Google Scholar 

  61. Qin, G. S. et al. Wideband supercontinuum generation in tapered tellurite microstructured fibers. Laser Phys. 21, 1115–1121 (2011).

    ADS  Google Scholar 

  62. Herr, T. et al. Universal dynamics of Kerr frequency comb formation in microresonators. Preprint at http://arxiv.org/abs/1111.3071 (2011).

  63. Savchenkov, A. A. et al. Tunable optical frequency comb with a crystalline whispering gallery mode resonator. Phys. Rev. Lett. 101, 093902 (2008).

    ADS  Google Scholar 

  64. Wang, C. Y. et al. Mid-infrared frequency combs based on microresonators. Preprint at http://arxiv.org/abs/1109.2716 (2011).

  65. Daussy, C. et al. Long-distance frequency dissemination with a resolution of 10−17. Phys. Rev. Lett. 94, 203904 (2005).

    ADS  Google Scholar 

  66. Shelkovnikov, A., Butcher, R. J., Chardonnet, C. & Amy-Klein, A. Stability of the proton-to-electron mass ratio. Phys. Rev. Lett. 100, 150801 (2008).

    ADS  Google Scholar 

  67. Lemarchand, C. et al. Progress towards an accurate determination of the Boltzmann constant by Doppler spectroscopy. New J. Phys. 13, 073028 (2011).

    ADS  Google Scholar 

  68. Darquié, B. et al. Progress toward the first observation of parity violation in chiral molecules by high-resolution laser spectroscopy. Chirality 22, 870–884 (2010).

    Google Scholar 

  69. Malara, P., Maddaloni, P., Gagliardi, G. & De Natale, P. Absolute frequency measurement of molecular transitions by a direct link to a comb generated around 3 μm. Opt. Express 16, 8242–8249 (2008).

    ADS  Google Scholar 

  70. Amy-Klein, A. et al. Absolute frequency measurement of a SF6 two-photon line by use of a femtosecond optical comb and sum-frequency generation. Opt. Lett. 30, 3320–3322 (2005).

    ADS  Google Scholar 

  71. Bielsa, F. et al. HCOOH high-resolution spectroscopy in the 9.18 μm region. J. Mol. Spectrosc. 247, 41–46 (2008).

    ADS  Google Scholar 

  72. Gatti, D. et al. High-precision molecular interrogation by direct referencing of a quantum-cascade-laser to a near-infrared frequency comb. Opt. Express 19, 17520–17527 (2011).

    ADS  Google Scholar 

  73. Bartalini, S. et al. Frequency-comb-referenced quantum-cascade laser at 4.4 μm. Opt. Lett. 32, 988–990 (2007).

    ADS  Google Scholar 

  74. Giusfredi, G. et al. Saturated-absorption cavity ring-down spectroscopy. Phys. Rev. Lett. 104, 110801 (2010).

    ADS  Google Scholar 

  75. Okubo, S., Nakayama, H., Iwakuni, K., Inaba, H. & Sasada, H. Absolute frequency list of the ν3-band transitions of methane at a relative uncertainty level of 10−11. Opt. Express 19, 23878–23888 (2011).

    ADS  Google Scholar 

  76. Vainio, M., Merimaa, M. & Halonen, L. Frequency-comb-referenced molecular spectroscopy in the mid-infrared region. Opt. Lett. 36, 4122–4124 (2011).

    ADS  Google Scholar 

  77. Marian, A., Stowe, M. C., Lawall, J. R., Felinto, D. & Ye, J. United time–frequency spectroscopy for dynamics and global structure. Science 306, 2063–2068 (2004).

    ADS  Google Scholar 

  78. Teets, R., Eckstein, J. & Hänsch, T. W. Coherent two-photon excitation by multiple light pulses. Phys. Rev. Lett. 38, 760–764 (1977).

    ADS  Google Scholar 

  79. Eckstein, J. N., Ferguson, A. I. & Hänsch, T. W. High-resolution two-photon spectroscopy with picosecond light pulses. Phys. Rev. Lett. 40, 847–850 (1978).

    ADS  Google Scholar 

  80. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Google Scholar 

  81. Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nature Photon. 4, 55–57 (2009).

    Google Scholar 

  82. Bernhardt, B. et al. Cavity-enhanced dual-comb spectroscopy. Nature Photon. 4, 55–57 (2010).

    ADS  Google Scholar 

  83. Thorpe, M. J. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008).

    ADS  Google Scholar 

  84. Adler, F. et al. Cavity-enhanced direct frequency comb spectroscopy: technology and applications. Ann. Rev. Anal. Chem. 3, 175–205 (2010).

    Google Scholar 

  85. Thorpe, M. J. et al. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    ADS  Google Scholar 

  86. Griffiths, P. R. & De Haseth, J. A. Fourier Transform Infrared Spectroscopy 2nd edn, 1–656 (Wiley, 2007).

    Google Scholar 

  87. Adler, F. et al. Mid-infrared Fourier transform spectroscopy with a broadband frequency comb. Opt. Express 18, 21861–21872 (2010).

    ADS  Google Scholar 

  88. Foltynowicz, A., Malowski, P., Fleisher, A. J., Bjork, B. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy in the mid-infrared — application to trace detection of H2O2 . Preprint at http://arxiv.org/abs/1202.1216 (2012).

  89. Amarie, S. & Keilmann, F. Broadband-infrared assessment of phonon resonance in scattering-type near-field microscopy. Phys. Rev. B 83, 045404 (2011).

    ADS  Google Scholar 

  90. Ganz, T., Brehm, M., von Ribbeck, H. G., van der Weide, D. W. & Keilmann, F. Vector frequency-comb Fourier-transform spectroscopy for characterizing metamaterials. New J. Phys. 10, 123007 (2008).

    ADS  Google Scholar 

  91. Brehm, M., Schliesser, A. & Keilmann, F. Spectroscopic near-field microscopy using frequency combs in the mid-infrared. Opt. Express 14, 11222–11233 (2006).

    ADS  Google Scholar 

  92. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2007).

    ADS  Google Scholar 

  93. Zolot, A. M. et al. Direct-comb molecular spectroscopy with accurate, resolved comb teeth over 43 THz. Opt. Lett. 37, 638–640 (2012).

    ADS  Google Scholar 

  94. Ideguchi, T., Poisson, A., Guelachvili, G., Picqué, N. & Hänsch, T. W. Adaptive real-time dual-comb spectroscopy. Preprint at http://arxiv.org/abs/1201.4177 (2012).

  95. Ideguchi, T., Bernhardt, B., Guelachvili, G., Hänsch, T. W. & Picqué, N. Femtosecond stimulated raman dual-comb spectroscopy in CLEO: Applications and Technology paper CThC5.6 (OSA, 2012).

    Google Scholar 

  96. Zhang, Z. et al. Asynchronous midinfrared ultrafast optical parametric oscillator for dual-comb spectroscopy. Opt. Lett. 37, 187–189 (2012).

    ADS  Google Scholar 

  97. Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).

    ADS  Google Scholar 

  98. Steinmetz, T. et al. Laser frequency combs for astronomical observations. Science 23, 1335–1337 (2008).

    ADS  Google Scholar 

  99. Li, C.-H. et al. A laser frequency comb that enables radial velocity measurements with a precision of 1 cm s−1. Nature 452, 610–612 (2008).

    ADS  Google Scholar 

  100. Mayor, M. & Queloz, D. A Jupiter-mass companion to a solar-type star. Nature 378, 355–359 (1995).

    ADS  Google Scholar 

  101. Figueira, P. et al. Radial velocities with CRIRES. Pushing precision down to 5–10 m/s. Astron. Astrophys. 511, A55 (2010).

    Google Scholar 

  102. Sheehy, B. et al. High harmonic generation at long wavelengths. Phys. Rev. Lett. 83, 5270–5273 (1999).

    ADS  Google Scholar 

  103. Krause, J. L., Schafer, K. J. & Kulander, K. C. High-order harmonic generation from atoms and ions in the high intensity regime. Phys. Rev. Lett. 68, 3535–3538 (1992).

    ADS  Google Scholar 

  104. Silva, F., Bates, P. K., Esteban-Martin, A., Ebrahim-Zadeh, M. & Biegert, J. High-average-power, carrier–envelope phase-stable, few-cycle pulses at 2.1 μm from a collinear BiB3O6 optical parametric amplifier. Opt. Lett. 37, 933–935 (2012).

    ADS  Google Scholar 

  105. Lee, S. J., Widiyatmoko, B., Kourogi, M. & Ohtsu, M. Ultrahigh scanning speed optical coherence tomography using optical frequency comb generators. Jpn J. Appl. Phys. 40, L878–L880 (2001).

    ADS  Google Scholar 

  106. Giorgetta, F. R., Coddington, I., Baumann, E., Swann, W. C. & Newbury, N. R. Fast high-resolution spectroscopy of dynamic continuous-wave laser sources. Nature Photon. 4, 853–857 (2010).

    ADS  Google Scholar 

  107. Rothman, L. S. et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Ra. 110, 533–572 (2009).

    ADS  Google Scholar 

Download references

Acknowledgements

T.W.H. and N.P. acknowledge support by the European Associated Laboratory 'European Laboratory for Frequency Comb Spectroscopy' and the Max Planck Foundation. A.S. acknowledges support from a Marie Curie IAPP programme and the Swiss National Science Foundation. A. Amy-Klein, E. Baumann, B. Darquié, P. de Natale, A. Foltynowicz-Matyba, F. Keilmann, T.J. Kippenberg, D. Mazzotti, N.R Newbury, K. Vodopyanov, C.Y. Wang and J.Ye are gratefully acknowledged for providing comments, data and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Picqué.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schliesser, A., Picqué, N. & Hänsch, T. Mid-infrared frequency combs. Nature Photon 6, 440–449 (2012). https://doi.org/10.1038/nphoton.2012.142

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing