Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption

Abstract

The enhancement of carrier multiplication in semiconductor nanocrystals attracts a great deal of attention because of its potential in photovoltaic applications. Here, we present the results of investigations of a novel carrier multiplication mechanism recently proposed for closely spaced silicon nanocrystals in SiO2 on the basis of photoluminescence. Using ultrafast pump–probe spectroscopy rigorously calibrated for the number of absorbed photons, we find that adjacent nanocrystals are excited directly upon absorption of a single high-energy photon. We demonstrate efficient carrier multiplication with an onset close to the energy conservation threshold of twice the bandgap, 2Eg. Moreover, with absorption of a single high-energy photon under low pump fluence conditions, it was found that carrier–carrier interaction was significantly suppressed, but the amplitude of the signal was enhanced. We show that these results are in excellent agreement with the dependence of photoluminescence quantum yield on excitation, as reported previously for similar materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Induced absorption signal for different excitation photon energies.
Figure 2: Possible microscopic mechanisms for spatially separated carrier multiplication.
Figure 3: Evidence for the direct mechanism of spatially separated carrier multiplication.

Similar content being viewed by others

References

  1. Nozik, A. J. Quantum dot solar cells. Physica E 14, 115–120 (2002).

    Article  ADS  Google Scholar 

  2. Schaller, R. D. & Klimov, V. I. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92, 186601 (2004).

    Article  ADS  Google Scholar 

  3. Schaller, R. D., Agranovich, V. M. & Klimov, V. I. High-efficiency carrier multiplication through direct photogeneration of multi-excitons via virtual single-exciton states. Nature Phys. 1, 189–194 (2005).

    Article  ADS  Google Scholar 

  4. Ellingson, R. J. et al. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865–871 (2005).

    Article  ADS  Google Scholar 

  5. Murphy, J. E. et al. PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. J. Am. Chem. Soc. 128, 3241–3247 (2006).

    Article  Google Scholar 

  6. Schaller, R. D., Petruska, M. A. & Klimov, V. I. Effect of electronic structure on carrier multiplication efficiency: comparative study of PbSe and CdSe nanocrystals. Appl. Phys. Lett. 87, 253102 (2005).

    Article  ADS  Google Scholar 

  7. Schaller, R. D., Sykora, M., Jeong, S. & Klimov, V. I. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 110, 25332–25338 (2006).

    Article  Google Scholar 

  8. Schaller, R. D., Pietryga, J. M. & Klimov, V. I. Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Lett. 7, 3469–3476 (2007).

    Article  ADS  Google Scholar 

  9. Beard, M. C. et al. Multiple exciton generation in colloidal silicon nanocrystals. Nano Lett. 7, 2506–2512 (2007).

    Article  ADS  Google Scholar 

  10. Nair, G. & Bawendi, M. G. Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Phys. Rev. B 76, 081304 (2007).

    Article  ADS  Google Scholar 

  11. Ben-Lulu, M., Mocatta, D., Bonn, M., Banin, U. & Ruhman, S. On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots. Nano Lett. 8, 1207–1211 (2008).

    Article  ADS  Google Scholar 

  12. Pijpers, J. J. H. et al. Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots. J. Phys. Chem. C 112, 4783–4784 (2008).

    Article  Google Scholar 

  13. Trinh, M. T. et al. In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Lett. 8, 1713–1718 (2008).

    Article  ADS  Google Scholar 

  14. Ji, M. B. et al. Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation. Nano Lett. 9, 1217–1222 (2009).

    Article  ADS  Google Scholar 

  15. Nair, G., Geyer, S. M., Chang, L. Y. & Bawendi, M. G. Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Phys. Rev. B 78, 125325 (2008).

    Article  ADS  Google Scholar 

  16. Trinh, M. T. et al. Anomalous independence of multiple exciton generation on different group IV–VI quantum dot architectures. Nano Lett. 11, 1623–1629 (2011).

    Article  ADS  Google Scholar 

  17. McGuire, J. A., Joo, J., Pietryga, J. M., Schaller, R. D. & Klimov, V. I. New aspects of carrier multiplication in semiconductor nanocrystals. Acc. Chem. Res. 41, 1810–1819 (2008).

    Article  Google Scholar 

  18. McGuire, J. A., Sykora, M., Joo, J., Pietryga, J. M. & Klimov, V. I. Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Lett. 10, 2049–2057 (2010).

    Article  ADS  Google Scholar 

  19. Luther, J. M. et al. Multiple exciton generation in films of electronically coupled PbSe quantum dots. Nano Lett. 7, 1779–1784 (2007).

    Article  ADS  Google Scholar 

  20. Beard, M. C. et al. Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Lett. 9, 836–845 (2009).

    Article  ADS  Google Scholar 

  21. Sukhovatkin, V., Hinds, S., Brzozowski, L. & Sargent, E. H. Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 324, 1542–1544 (2009).

    Article  ADS  Google Scholar 

  22. Nair, G., Chang, L. Y., Geyer, S. M. & Bawendi, M. G. Perspective on the prospects of a carrier multiplication nanocrystal solar cell. Nano Lett. 11, 2145–2151 (2011).

    Article  ADS  Google Scholar 

  23. Midgett, A. G., Hillhouse, H. W., Huges, B. K., Nozik, A. J. & Beard, M. C. Flowing versus static conditions for measuring multiple exciton generation in PbSe quantum dots. J. Phys. Chem. C 114, 17486–17500 (2010).

    Article  Google Scholar 

  24. Pijpers, J. J. H. et al. Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nature Phys. 5, 811–814 (2009).

    Article  ADS  Google Scholar 

  25. Velizhanin, K. A. & Piryatinski, A. Numerical study of carrier multiplication pathways in photoexcited nanocrystal and bulk forms of PbSe. Phys. Rev. Lett. 106, 207401 (2011).

    Article  ADS  Google Scholar 

  26. Delerue, C., Allan, G., Pijpers, J. J. H. & Bonn, M. Carrier multiplication in bulk and nanocrystalline semiconductors: mechanism, efficiency, and interest for solar cells. Phys. Rev. B 81, 125306 (2010).

    Article  ADS  Google Scholar 

  27. Beard, M. C. Multiple exciton generation in semiconductor quantum dots. J. Phys. Chem. Lett. 2, 1282–1288 (2011).

    Article  Google Scholar 

  28. Beard, M. C. et al. Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Lett. 10, 3019–3027 (2010).

    Article  ADS  Google Scholar 

  29. Wolf, M., Brendel, R., Werner, J. H. & Queisser, H. J. Solar cell efficiency and carrier multiplication in Si1– xGex alloys. J. Appl. Phys. 83, 4213–4221 (1998).

    Article  ADS  Google Scholar 

  30. Sambur, J. B., Novet, T. & Parkinson, B. A. Multiple exciton collection in a sensitized photovoltaic system. Science 330, 63–66 (2010).

    Article  ADS  Google Scholar 

  31. Timmerman, D., Izeddin, I., Stallinga, P., Yassievich, I. N. & Gregorkiewicz, T. Space-separated quantum cutting with silicon nanocrystals for photovoltaic applications. Nature Photon. 2, 105–109 (2008).

    Article  ADS  Google Scholar 

  32. de Boer, W. D. A. M. et al. Increased carrier generation rate in Si nanocrystals in SiO2 investigated by induced absorption. Appl. Phys. Lett. 99, 053126 (2011).

    Article  ADS  Google Scholar 

  33. Timmerman, D., Valenta, J., Dohnalová, K., de Boer, W. D. A. M. & Gregorkiewicz, T. Step-like enhancement of luminescence quantum yield of silicon nanocrystals. Nature Nanotech. 6, 710–713 (2011).

    Article  ADS  Google Scholar 

  34. Gabor, N. M., Zhong, Z. H., Bosnick, K., Park, J. & McEuen, P. L. Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science 325, 1367–1371 (2009).

    Article  ADS  Google Scholar 

  35. Cunningham, P. D. et al. Enhanced multiple exciton generation in quasi-one-dimensional semiconductors. Nano Lett. 11, 3476–3481 (2011).

    Article  ADS  Google Scholar 

  36. Wegh, R. T., Donker, H., Oskam, K. D. & Meijerink, A. Visible quantum cutting in LiGdF4:Eu3+ through downconversion. Science 283, 663–666 (1999).

    Article  ADS  Google Scholar 

  37. Miritello, M., Lo Savio, R., Cardile, P. & Priolo, F. Enhanced down conversion of photons emitted by photoexcited ErxY2– xSi2O7 films grown on silicon. Phys. Rev. B 81, 041411 (2010).

    Article  ADS  Google Scholar 

  38. Gali, A., Voros, M., Rocca, D., Zimanyi, G. T. & Galli, G. High-energy excitations in silicon nanoparticles. Nano Lett. 9, 3780–3785 (2009).

    Article  ADS  Google Scholar 

  39. Godefroo, S. et al. Classification and control of the origin of photoluminescence from Si nanocrystals. Nature Nanotech. 3, 174–178 (2008).

    Article  ADS  Google Scholar 

  40. Allan, G. & Delerue, C. Fast relaxation of hot carriers by impact ionization in semiconductor nanocrystals: role of defects. Phys. Rev. B 79, 195324 (2009).

    Article  ADS  Google Scholar 

  41. Franceschetti, A., An, J. M. & Zunger, A. Impact ionization can explain carrier multiplication in PbSe quantum dots. Nano Lett. 6, 2191–2195 (2006).

    Article  ADS  Google Scholar 

  42. Shabaev, A., Efros, A. L. & Nozik, A. J. Multiexciton generation by a single photon in nanocrystals. Nano Lett. 6, 2856–2863 (2006).

    Article  ADS  Google Scholar 

  43. Kagan, C. R., Murray, C. B. & Bawendi, M. G. Long-range resonance transfer of electronic excitations in close-packed CdSe quantum-dot solids. Phys. Rev. B 54, 8633–8643 (1996).

    Article  ADS  Google Scholar 

  44. Franzl, T. et al. Fast energy transfer in layer-by-layer assembled CdTe nanocrystal bilayers. Appl. Phys. Lett. 84, 2904–2906 (2004).

    Article  ADS  Google Scholar 

  45. Allan, G. & Delerue, C. Energy transfer between semiconductor nanocrystals: validity of Forster's theory. Phys. Rev. B 75, 195311 (2007).

    Article  ADS  Google Scholar 

  46. Nozik, A. J. Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annu. Rev. Phys. Chem. 52, 193–231 (2001).

    Article  ADS  Google Scholar 

  47. Lazarenkova, O. L. & Balandin, A. A. Miniband formation in a quantum dot crystal. J. Appl. Phys. 89, 5509–5515 (2001).

    Article  ADS  Google Scholar 

  48. Takeoka, S., Fujii, M. & Hayashi, S. Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime. Phys. Rev. B 62, 16820 (2000).

    Article  ADS  Google Scholar 

  49. de Boer, W. D. A. M. et al. Red spectral shift and enhanced quantum efficiency in phonon-free photoluminescence from silicon nanocrystals. Nature Nanotech. 5, 878–884 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Fujii (Kobe University) for sharing expertise on the preparation of sputtered layers, and K. Dohnalová and D. Timmerman for discussions and comments. This work was financially sponsored by Stichting voor de Technische Wetenschappen (STW) and NanoNextNL.

Author information

Authors and Affiliations

Authors

Contributions

M.T.T. and T.G. conceived the project. M.T.T. designed and performed the experiments and data analysis, and wrote the manuscript. J.M.S. and L.D.A.S. facilitated femtosecond absorption experiments. R.L. and W.dB. contributed to the experimental part and the concept of the project, respectively. T.G. supervised the project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to M. Tuan Trinh or Tom Gregorkiewicz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trinh, M., Limpens, R., de Boer, W. et al. Direct generation of multiple excitons in adjacent silicon nanocrystals revealed by induced absorption. Nature Photon 6, 316–321 (2012). https://doi.org/10.1038/nphoton.2012.36

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.36

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing