Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion

Abstract

Light emission from organic light-emitting diodes that make use of fluorescent materials have an internal quantum efficiency that is typically limited to no more than 25% due to the creation of non-radiative triplet excited states. Here, we report the use of electron-donating and electron-accepting molecules that allow a very high reverse intersystem crossing of 86.5% between non-radiative triplet and radiative singlet excited states and thus a means of achieving enhanced electroluminescence. Organic light-emitting diodes made using m-MTDATA as the donor material and 3TPYMB as the acceptor material demonstrate that external quantum efficiencies as high as 5.4% can be achieved, and we believe that the approach will offer even higher values in the future as a result of careful material selection.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photoluminescence spectra.
Figure 2: Transient photoluminescence characteristics.
Figure 3: Activation energy of reverse ISC rate.
Figure 4: Performance characteristics of the OLEDs with m-MTDATA:t-Bu-PBD emitting layer.
Figure 5: Formation of exciplex state between m-MTDATA and 3TPYMB.
Figure 6: Performance characteristics of the OLEDs with m-MTDATA:3TPYMB emitting layer.

Similar content being viewed by others

References

  1. Mitschke, U. & Bäuerle, P. The electroluminescence of organic materials. J. Mater. Chem. 10, 1471–1507 (2000).

    Article  Google Scholar 

  2. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  ADS  Google Scholar 

  3. Lamansky, S. et al. Highly phosphorescent bis-cyclometalated iridium complexes: synthesis, photophysical characterization, and use in organic light emitting diodes. J. Am. Chem. Soc. 123, 4304–4312 (2001).

    Article  Google Scholar 

  4. Tsutsui, T. & Saito, S. Organic Multilayer-Dye Electroluminescent Diodes—Is There Any Difference with Polymer LED? (Kluwer Academic, 1993).

    Book  Google Scholar 

  5. Rothberg, L. J. & Lovinger, A. J. Status of and prospects for organic electroluminescence. J. Mater. Res. 11, 3174–3187 (1996).

    Article  ADS  Google Scholar 

  6. Adachi, C., Baldo, M. A., Thompson, M. E. & Forrest, S. R. Nearly 100% internal phosphorescence efficiency in an organic light emitting device. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  ADS  Google Scholar 

  7. Deaton, J. C. et al. E-type delayed fluorescence of a phosphine-supported Cu2(μ-NAr2)2 diamond core: harvesting singlet and triplet exactions in OLEDs. J. Am. Chem. Soc. 132, 9499–9508 (2010).

    Article  Google Scholar 

  8. Bolton, O., Kangwon, L., Kim, H.-J., Lin, K. Y. & Kim, J. Activating efficient phosphorescence from purely organic materials by crystal design. Nature Chem. 3, 205–210 (2011).

    Article  ADS  Google Scholar 

  9. Kondakov, D. Y., Pawlik, T. D., Hatwar, T. K. & Spindler, J. P. Triplet annihilation exceeding spin statistical limit in highly efficient fluorescent organic light-emitting diodes. J. Appl. Phys. 106, 124510 (2009).

    Article  ADS  Google Scholar 

  10. Endo, A. et al. Thermally activated delayed fluorescence from Sn4+–porphyrin complexes and their application to organic light-emitting diodes—a novel mechanism for electroluminescence. Adv. Mater. 21, 4802–4806 (2009).

    Article  Google Scholar 

  11. Endo, A. et al. Efficient up-conversion of triplet excitons into a singlet state and its application for organic light emitting diodes. Appl. Phys. Lett. 98, 083302 (2011).

    Article  ADS  Google Scholar 

  12. Morteani, A. C. et al. Barrier-free electron–hole capture in polymer blend heterojunction light-emitting diodes. Adv. Mater. 15, 1708–1712 (2003).

    Article  Google Scholar 

  13. Osaheni, J. A. & Jenekhe, S. A. Efficient blue luminescence of a conjugated polymer exciplex. Macromolecules 27, 739–742 (1994).

    Article  ADS  Google Scholar 

  14. Berggren, M. et al. White light from an electroluminescent diode made from poly[3(4-octylphenyl)-2,2′-bithiophene] and an oxadiazole derivative. J. Appl. Phys. 76, 7530–7534 (1994).

    Article  ADS  Google Scholar 

  15. Tamoto, N., Adachi, C. & Nagai, K. Electroluminescence of 1,3,4-oxadiazole and triphenylamine-containing molecules as an emitter in organic multilayer light emitting diodes. Chem. Mater. 9, 1077–1085 (1997).

    Article  Google Scholar 

  16. Gebler, D. D. et al. Exciplex emission in bilayer polymer light-emitting devices. Appl. Phys. Lett. 70, 1644–1646 (1997).

    Article  ADS  Google Scholar 

  17. Wang, J.-F. et al. Exciplex electroluminescence from organic bilayer devices composed of triphenyldiamine and quinoxaline derivatives. Adv. Mater. 10, 230–233 (1998).

    Article  Google Scholar 

  18. Itano, K., Ogawa, H. & Shirota, Y. Exciplex formation at the organic solid-state interface: yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials. Appl. Phys. Lett. 72, 636–638 (1998).

    Article  ADS  Google Scholar 

  19. Chao, C.-L. & Chen S.-A. White light emission from exciplex in a bilayer device with two blue light-emitting polymers. Appl. Phys. Lett. 73, 426–428 (1998).

    Article  ADS  Google Scholar 

  20. Noda, T., Ogawa, H. & Shirota, Y. A blue-emitting organic electroluminescent device using a novel emitting amorphous molecular material, 5,5′-bis(dimesitylboryl)-2,2′-bithiophene. Adv. Mater. 11, 283–285 (1999).

    Article  Google Scholar 

  21. Cocchi, M. et al. Efficient exciplex emitting organic electroluminescent devices. Appl. Phys. Lett. 80, 2401–2403 (2002).

    Article  ADS  Google Scholar 

  22. Palilis, L. C., Mäkinen, A. J., Uchida, M. & Kafafi, Z. H. Highly efficient molecular organic light-emitting diodes based on exciplex emission. Appl. Phys. Lett. 82, 2209–2211 (2003).

    Article  ADS  Google Scholar 

  23. Matsumoto, N., Nishiyama, M. & Adachi, C. Exciplex formations between tris(8-hydoxyquinolate)aluminum and hole transport materials and their photoluminescence and electroluminescence characteristics. J. Phys. Chem. C 112, 7735–7741 (2008).

    Article  Google Scholar 

  24. Iwata, S., Tanaka, J. & Nagakura, S. Phosphorescence of the charge-transfer triplet states of some molecular complexes. J. Chem. Phys. 47, 2203–2209 (1967).

    Article  ADS  Google Scholar 

  25. Gordon, M. & Ware, W. R. The Exciplex (Academic Press, 1975).

    Google Scholar 

  26. Luňák, S., Nepraš, M., Hrdina, R., Kurfürst, A. & Kuthan, J. Photophysics of PBD derivatives. II. The character of the lowest excited triplet state of 2-(biphenyl-4′-yl)-5-phenyl-1,3,4-oxadiazole. Chem. Phys. 170, 77–88 (1993).

    Article  Google Scholar 

  27. Madigan, C. F. & Bulović, V. Solid state salvation in amorphous organic thin films. Phys. Rev. Lett. 91, 247403 (2003).

    Article  ADS  Google Scholar 

  28. Wolf, M. W., Legg, K. D., Brown, R. E., Singer, L. A. & Parks, J. H. Photophysical studies on the benzophenones. Prompt and delayed fluorescences and self-quenching. J. Am. Chem. Soc. 97, 4490–4497 (1975).

    Article  Google Scholar 

  29. Fang, T.-S., Brown, R. E., Kwan, C. L. & Parks, J. H. Photophysical studies on benzil. Time resolution of the prompt and delayed emissions and a photokinetic study indicating deactivation of the triplet by reversible exciplex formation. J. Phys. Chem. 82, 2489–2496 (1978).

    Article  Google Scholar 

  30. Levy, D. & Avnir, D. Room temperature phosphorescence and delayed fluorescence of organic molecules trapped in silica sol-gel glasses. J. Photochem. Photobiol. A 57, 41–63 (1991).

    Article  Google Scholar 

  31. Smith, L. H., Wasey, J. A. E. & Barnes, W. L. Light outcoupling efficiency of top-emitting organic light-emitting diodes. Appl. Phys. Lett. 84, 2986–2988 (2004).

    Article  ADS  Google Scholar 

  32. Granlund, T., Pettersson, L. A. A., Anderson, M. R. & Inganäs, O. Interference phenomenon determines the color in an organic light emitting diode. J. Appl. Phys. 81, 8097–8103 (1997).

    Article  ADS  Google Scholar 

  33. Kalinowski, J. et al. Impact of high electric fields on the charge recombination process in organic light-emitting diodes. J. Phys. D 33, 2379–2387 (2000).

    Article  ADS  Google Scholar 

  34. Giro, G., Cocchi, M., Kalinowski, J., Di Marco, P. & Fattori, V. Multicomponent emission from organic light emitting diodes based on polymer dispersion of an aromatic diamine and an oxadiazole derivative. Chem. Phys. Lett. 318, 127–141 (2000).

    Article  ADS  Google Scholar 

  35. Gould, I. R., Young, R. H., Mueller, L. J., Albrecht, A. C. & Farid, S. Electronic structures of exciplexes and excited charge-transfer complexes. J. Am. Chem. Soc. 116, 8188–8199 (1994).

    Article  Google Scholar 

  36. Huang, Y.-S. et al. Electronic structures of interfacial states formed at polymeric semiconductor heterojunctions. Nature Mater. 7, 483–489 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank K. Tokumaru for fruitful discussions. This work was supported in part by the Funding Program for World-Leading Innovative R&D on Science and Technology (FIRST) and the Konica Minolta Science and Technology Foundation. The authors thank the Global Centers of Excellence (COE) programme ‘Science for Future Molecular Systems’ of the Ministry of Education, Culture, Sports, Science and Technology of Japan (MEXT).

Author information

Authors and Affiliations

Authors

Contributions

K.G. and K.Y. designed the experiments, carried out the measurements of the photoluminescence and electroluminescence characteristics and discussed the experimental data with C.A. K.S. provided experimental support and suggestions. K.G. and C.A. wrote the manuscript.

Corresponding author

Correspondence to Chihaya Adachi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 867 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goushi, K., Yoshida, K., Sato, K. et al. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nature Photon 6, 253–258 (2012). https://doi.org/10.1038/nphoton.2012.31

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2012.31

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing