Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strongly correlated photons on a chip

Abstract

Optical nonlinearities at the single-photon level are key ingredients for future photonic quantum technologies1. Prime candidates for the realization of the strong photon–photon interactions necessary for implementing quantum information processing tasks2, as well as for studying strongly correlated photons3,4,5,6 in an integrated photonic device setting, are quantum dots embedded in photonic-crystal nanocavities. Here, we report strong quantum correlations between photons on picosecond timescales. We observe (i) photon antibunching upon resonant excitation of the lowest-energy polariton state, proving that the first cavity photon blocks the subsequent injection events, and (ii) photon bunching when the laser field is in two-photon resonance with the polariton eigenstates of the second Jaynes–Cummings manifold7,8, demonstrating that two photons at this colour are more likely to be injected into the cavity jointly than they would otherwise. Together, these results demonstrate unprecedented strong single-photon nonlinearities, paving the way for the realization of a quantum optical Josephson interferometer9 or a single-photon transistor10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Resonant scattering spectroscopy of a quantum dot strongly coupled to a photonic-crystal cavity.
Figure 2: From Poissonian light to antibunched and bunched photon streams.
Figure 3: Calculated and measured autocorrelation functions gpulsed(2)(0) for different cavity and laser detunings.

Similar content being viewed by others

References

  1. O'Brien, J. L., Furusawa, A. & Vučković, J. Photonic quantum technologies. Nature Photon. 3, 687–695 (2009).

    Article  ADS  Google Scholar 

  2. Mabuchi, H. & Doherty, A. C. Cavity quantum electrodynamics: coherence in context. Science 298, 1372–1377 (2002).

    Article  ADS  Google Scholar 

  3. Hartmann, M. J., Brandão, F. G. S. L. & Plenio, M. B. Strongly interacting polaritons in coupled arrays of cavities. Nature Phys. 2, 849–855 (2006).

    Article  ADS  Google Scholar 

  4. Greentree, A. D., Tahan, C., Cole, J. H. & Hollenberg, L. C. L. Quantum phase transitions of light. Nature Phys. 2, 856–861 (2006).

    Article  ADS  Google Scholar 

  5. Angelakis, D. G., Santos, M. F. & Bose, S. Photon blockade induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007).

    Article  ADS  Google Scholar 

  6. Carusotto, I. et al. Fermionized photons in an array of driven dissipative nonlinear cavities. Phys. Rev. Lett. 103, 033601 (2009).

    Article  ADS  Google Scholar 

  7. Kubanek, A. et al. Two-photon gateway in one-atom cavity quantum electrodynamics. Phys. Rev. Lett. 101, 203602 (2008).

    Article  ADS  Google Scholar 

  8. Schneebeli, L., Kira, M. & Koch, S. W. Characterization of strong light–matter coupling in semiconductor quantum-dot microcavities via photon-statistics spectroscopy. Phys. Rev. Lett. 101, 097401 (2008).

    Article  ADS  Google Scholar 

  9. Gerace, D., Türeci, H. E., Imamoğlu, A., Giovannetti, V. & Fazio, R. The quantum optical Josephson interferometer. Nature Phys. 5, 281–284 (2009).

    Article  ADS  Google Scholar 

  10. Chang, D. E., Sørensen A. S., Demler, E. A. & Lukin, M. A single-photon transistor using nanoscale surface plasmons. Nature Phys. 3, 807–812 (2007).

    Article  ADS  Google Scholar 

  11. Imamoğlu, A., Schmidt, H., Woods, G. & Deutsch, M. Strongly interacting photons in a nonlinear cavity. Phys. Rev. Lett. 79, 1467–1470 (1997).

    Article  ADS  Google Scholar 

  12. Brune, M. et al. Quantum Rabi oscillations: a direct test of field quantization in a cavity. Phys. Rev. Lett. 76, 1800–1803 (1996).

    Article  ADS  Google Scholar 

  13. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic-crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  14. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  15. Peter, E. et al. Exciton–photon strong-coupling regime for a single quantum dot embedded in a microcavity. Phys. Rev. Lett. 95, 067401 (2005).

    Article  ADS  Google Scholar 

  16. Hennessy, K. et al. Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  17. Fink, J. M. et al. Climbing the Jaynes–Cummings ladder and observing its nonlinearity in a cavity QED system. Nature 454, 315–318 (2008).

    Article  ADS  Google Scholar 

  18. Deppe, F. et al. Two-photon probe of the Jaynes–Cummings model and controlled symmetry breaking in circuit QED. Nature Phys. 4, 686–691 (2008).

    Article  ADS  Google Scholar 

  19. Bishop, L. S. et al. Nonlinear response of the vacuum Rabi resonance. Nature Phys. 5, 105–109 (2009).

    Article  ADS  Google Scholar 

  20. Birnbaum, K. M. et al. Photon blockade in an optical cavity with one trapped atom. Nature 436, 87–90 (2005).

    Article  ADS  Google Scholar 

  21. Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    Article  ADS  Google Scholar 

  22. Faraon, A. et al. Coherent generation of non-classical light on a chip via photon-induced tunneling and blockade. Nature Phys. 4, 859–863 (2008).

    Article  ADS  Google Scholar 

  23. Kasprzak, J. et al. Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Mater. 9, 304–308 (2010).

    Article  ADS  Google Scholar 

  24. Moser, S. et al. Scanning a photonic-crystal slab nanocavity by condensation of xenon. Appl. Phys. Lett. 87, 141105 (2005).

    Article  ADS  Google Scholar 

  25. Englund, D. et al. Controlling cavity reflectivity with a single quantum dot. Nature 450, 857–861 (2007).

    Article  ADS  Google Scholar 

  26. Srinivasan, K. & Painter, O. Linear and nonlinear optical spectroscopy of a strongly coupled microdisk–quantum dot system. Nature 450, 862–866 (2007).

    Article  ADS  Google Scholar 

  27. Santori, C. et al. Submicrosecond correlations in photoluminescence from InAs quantum dots. Phys. Rev. B 69, 205324 (2004).

    Article  ADS  Google Scholar 

  28. Manson, N. B. & Harrison, J. P. Photo-ionization of the nitrogen-vacancy centre in diamond. Diam. Rel. Mater. 14, 1705–1710 (2005).

    Article  Google Scholar 

  29. Mohan, A. et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photon. 4, 302–306 (2010).

    Article  Google Scholar 

  30. Gallo, P. et al. Integration of site-controlled pyramidal quantum dots and photonic-crystal membrane cavities. Appl. Phys. Lett. 92, 263101 (2008).

    Article  ADS  Google Scholar 

  31. Bennett, A. J. et al. Giant Stark effect in the emission of single semiconductor quantum dots. Appl. Phys. Lett. 97, 031104 (2010).

    Article  ADS  Google Scholar 

  32. Duan, L-M. & Kimble, H. J. Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Centre of Competence in Research, Quantum Photonics (NCCR QP), a research instrument of the Swiss National Science Foundation (SNSF), and a European Research Council (ERC) Advanced Investigator Grant (A.I.). The authors thank I. Carusotto for helpful discussions.

Author information

Authors and Affiliations

Authors

Contributions

A.R. and T.V. conducted the experiments, analysed the data and performed the simulations. M.W. made essential contributions to the experiment in its early stages. A.B., K.J.H. and E.L.H. fabricated the structure that ensures maximal dot–cavity coupling. A.R., T.V. and A.I. conceived the experiment, discussed the results and wrote the manuscript.

Corresponding authors

Correspondence to Thomas Volz or Ataç Imamoğlu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reinhard, A., Volz, T., Winger, M. et al. Strongly correlated photons on a chip. Nature Photon 6, 93–96 (2012). https://doi.org/10.1038/nphoton.2011.321

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.321

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing