Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells

Abstract

Inverted polymer bulk heterojunction solar cells have received a great deal of attention because of their compatibility with large-scale roll-to-roll processing. The inverted cell geometry has the following structure: substrate (rigid or flexible)/indium tin oxide/electron-transporting layer/photoactive layer/hole-transporting layer/top anode. Solution-processed metal-oxide films, based on materials such as ZnO and TiO2, are typically used as the electron-transporting layers. Here, we demonstrate enhanced charge collection in inverted polymer solar cells using a surface-modified ZnO–polymer nanocomposite electron-transporting layer. Using this approach, we demonstrate inverted polymer solar cells based on a low-bandgap polymer with an alternating dithienogermole–thienopyrrolodione repeat unit (PDTG–TPD) with certified power conversion efficiencies of 7.4%. To our knowledge, this is the highest efficiency reported to date for polymer solar cells with a device architecture compatible with the roll-to-roll process.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of light soaking on device performance for inverted solar cells with an as-prepared ZnO–PVP nanocomposite ETL.
Figure 2: Enhanced device performance in inverted PDTG–TPD:PC71BM solar cells by UV-ozone treatment of the ZnO–PVP nanocomposite ETL.
Figure 3: Certified IV characteristics for an inverted PDTG–TPD:PC71BM solar cell with 10 min UV-ozone treated ZnO–PVP nanocomposite ETL.
Figure 4: Tapping-mode AFM images for ZnO–PVP nanocomposite films used in device fabrication (optimized conditions).
Figure 5: XPS data for the as-prepared and 10 min UV-ozone treated ZnO–PVP nanocomposite films.

Similar content being viewed by others

References

  1. Li, G., Chu, C. W., Shrotriya, V., Huang, J. & Yang, Y. Efficient inverted polymer solar cells. Appl. Phys. Lett. 88, 253503 (2006).

    Article  ADS  Google Scholar 

  2. Chen, L. M., Hong, Z. R., Li, G. & Yang, Y. Recent progress in polymer solar cells: manipulation of polymer:fullerene morphology and the formation of efficient inverted polymer solar cells. Adv. Mater. 21, 1434–1449 (2009).

    Article  Google Scholar 

  3. Peet, J. et al. Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature Mater. 6, 497–500 (2007).

    Article  ADS  Google Scholar 

  4. Chen, H-Y. et al. Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photon. 3, 649–653 (2009).

    Article  ADS  Google Scholar 

  5. Hou, J. et al. Synthesis of a low band gap polymer and its application in highly efficient polymer solar cells. J. Am. Chem. Soc. 131, 15586–15587 (2009).

    Article  Google Scholar 

  6. Hou, J., Chen, H-Y., Zhang, S., Li, G. & Yang, Y. Synthesis, characterization, and photovoltaic properties of a low band gap polymer based on a silole-containing polythiophenes and 2,1,3-benzothiadiazole. J. Am. Chem. Soc. 130, 16144–16145 (2008).

    Article  Google Scholar 

  7. Li, Z. et al. Alternating copolymers of cyclopenta[2,1-b;3,4-b′]diothiophene and thieno[3,4-c]pyrrole-4,6-dione for high performance polymer solar cells. Adv. Funct. Mater. 21, 3331–3336 (2011).

    Article  ADS  Google Scholar 

  8. Park, S. H. et al. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nature Photon. 26, 297–303 (2009).

    Article  ADS  Google Scholar 

  9. Yip, H-L., Hau, S. K., Baek, N. S., Ma, H. & Jen, A. K-Y. Polymer solar cells that use self-assembled-monolayer-modified ZnO/metals as cathodes. Adv. Mater. 20, 2376–2382 (2008).

    Article  Google Scholar 

  10. Krebs, F. C. All solution roll-to-roll processed polymer solar cells free from indium-tin-oxide and vacuum coating steps. Org. Electron. 10, 761–768 (2009).

    Article  Google Scholar 

  11. Krebs, F. C. Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93, 465–475 (2009).

    Article  Google Scholar 

  12. Krebs, F. C., Gevorgyan, S. A. & Alstrup, J. A roll-to-roll process to flexible polymer solar cells: model studies, manufacture and operational stability studies. J. Mater. Chem. 19, 5442–5451 (2009).

    Article  Google Scholar 

  13. Krebs, F. C., Tromholt, T. & Jorgenson, M. Upscaling of polymer solar cell fabrication using full roll-to-roll processing. Nanoscale 2, 873–886 (2010).

    Article  ADS  Google Scholar 

  14. Beek, W. J. E. et al. Hybrid zinc oxide polymer bulk heterojunction solar cells. J. Phys. Chem. B 109, 9505–9516 (2005).

    Article  Google Scholar 

  15. Hau, S. K. et al. Air-stable inverted flexible polymer solar cells using zinc oxide nanoparticles as an electron selective layer. Appl. Phys. Lett. 92, 253301 (2008).

    Article  ADS  Google Scholar 

  16. Guo, L. et al. Highly monodisperse polymer-capped ZnO nanoparticles: preparation and optical properties. Appl. Phys. Lett. 76, 2901–2903 (2000).

    Article  ADS  Google Scholar 

  17. Mahamuni, S. et al. ZnO nanoparticles embedded in polymeric matrices. Nanostruct. Mater. 7, 659–666 (1996).

    Article  Google Scholar 

  18. Cavaleri, J. J. et al. Femtosecond study of the size-dependent charge carrier dynamics in ZnO nanocluster solutions. Chem. Phys. 103, 5378–5386 (1995).

    ADS  Google Scholar 

  19. Sakohara, S. et al. Visible luminescence and surface properties of nanosized ZnO colliods prepared by hydrolyzing zinc acetate. J. Phys. Chem. B 102, 10169–10175 (1998).

    Article  Google Scholar 

  20. Monticone, S. et al. Complex nature of the UV and visible fluorescence of colloidal ZnO nanoparticles. J. Phys. Chem. B 102, 2854–2862 (1998).

    Article  Google Scholar 

  21. Guo, L. et al. Synthesis and characterization of poly(vinylpyrrolidone)-modified zinc oxide nanoparticles. Chem. Mater. 12, 2268–2274 (2000).

    Article  Google Scholar 

  22. Du, T. B. & Ilegbusi, O. J. Synthesis and morphological characterization on PVP/ZnO nano hybrid films. J. Mater. Sci. Lett. 39, 6105–6109 (2004).

    Article  ADS  Google Scholar 

  23. Du, T. B., Song, H. W. & Ilegbusi, O. J. Sol-gel derived ZnO/PVP nanocomposite thin film for superoxide radical sensor. Mater. Sci. Eng. C 27, 414–420 (2007).

    Article  Google Scholar 

  24. Singla, M. L. et al. Optical characterization of ZnO nanoparticles capped with various surfactants. J. Lumin. 129, 434–438 (2009).

    Article  Google Scholar 

  25. Tang, H. X. et al. Gas sensing behavior of polyvinylpyrrolidone-modified ZnO nanoparticles for trimethylamine. Sens. Actuat. B 113, 324–328 (2006).

    Article  Google Scholar 

  26. Amb, C. M. et al. Dithienogermole as a fused electron donor in bulk heterojunection solar cells. J. Am. Chem. Soc. 133, 10062–10065 (2011).

    Article  Google Scholar 

  27. Chu, T. Y. et al. Bulk heterojunction solar cells using thieno[3,4-c]pyrrole-4,6-dione and dithieno[3,2-b:2′, 3′-d]silole copolymer with a power conversion effciency of 7.3%. J. Am. Chem. Soc. 12, 4250–4253 (2011).

    Article  Google Scholar 

  28. Subbiah, J., Kim, D. Y., Hartel, M. & So, F. MoO3/TFB double interlayer effect on polymer solar cells. Appl. Phys. Lett. 96, 063303 (2010).

    Article  ADS  Google Scholar 

  29. Subbiah, J. et al. Combined effects of MoO3 interlayer and PC70BM on polymer photovoltaic device performance. Org. Elect. 11, 955–958 (2010).

    Article  Google Scholar 

  30. Kim, D. Y. et al. The effect of molybdenum oxide on organic solar cells. Appl. Phys. Lett. 95, 093304 (2009).

    Article  ADS  Google Scholar 

  31. Irfan et al. Energy level evolution of molybdenum trioxide interlayer between indium tin oxide and organic semiconductor. Appl. Phys. Lett. 96, 073304 (2010).

    Article  ADS  Google Scholar 

  32. Meyer, J. et al. MoO3 films spin-coated from a nanoparticle suspension for efficient hole-injection in organic electronics. Adv. Mater. 23, 70–73 (2011).

    Article  Google Scholar 

  33. Lilliedal, M. R. et al. The effect of post-processing treatments on inflection points in current–voltage curves of roll-to-roll processed polymer photovoltaics. Sol. Energy Mater. Sol. Cells 94, 2013–2031 (2010).

    Article  Google Scholar 

  34. Aliaga, C. et al. Sum frequency generation and catalytic reaction studies of the removal of organic capping agents from Pt nanoparticles by UV-ozone treatment. J. Phys. Chem. C 113, 6150–6155 (2009).

    Article  Google Scholar 

  35. Park, J. Y., Aliaga, C., Renzas, J. R., Lee, H. & Somorjai, G. A. The role of organic capping layers of platinum nanoparticles in catalytic activity of CO oxidation. Catal. Lett. 129, 1–6 (2009).

    Article  Google Scholar 

  36. Sun, Y. M., Seo, J. H., Takacs, C. J., Seifter, J. & Heeger, A. J. Inverted polymer solar cells integrated with a low-temperature-annealed sol–gel-derived ZnO film as an electron transport layer. Adv. Mater. 23, 1679–1683 (2011).

    Article  Google Scholar 

  37. Zhang, Y. T. et al. X-ray photoelectron spectroscopy study of ZnO films grown by metal-organic chemical vapor deposition. J. Crystal Growth 252, 180–183 (2003).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support from the Office of Naval Research (contract no. N000141110245) for the fabrication and characterization of polymer solar cells. F.S. acknowledges support from the Department of Energy Basic Energy Sciences (contract no. DE-FG0207ER46464) for the synthesis and characterization of ZnO composite films. J.R.R. acknowledges the support of the Air Force Office of Scientific Research (contract no. FA9550-09-1-0320) for the synthesis of the PDTG and PDTS polymers. The authors would also like to thank the Major Analytical Instrumentation Center (MAIC) and the Dr Andrew Rinzler research group at the University of Florida for their assistance in characterizing the ZnO composite films.

Author information

Authors and Affiliations

Authors

Contributions

C.E.S. performed polymer solar cell fabrication, characterization and data analysis, as well as characterization of the ZnO–polymer films by AFM and XPS. S.C. contributed to data analysis, establishing a model to explain the ETL effects, and fabrication of the certified solar cells. J.S. contributed to the early process optimization of the PDTG–TPD and PDTS–TPD BHJ solar cells. T-H.L. conceived the idea for modification of the ZnO–polymer composite ETL by UV-ozone treatment and conducted optical transmission measurements. C.A. synthesized the polymers used in this work. S-W.T. assisted in planning and interpreting the data. F.S. and J.R.R. initiated and directed the research project. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to John R. Reynolds or Franky So.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Small, C., Chen, S., Subbiah, J. et al. High-efficiency inverted dithienogermole–thienopyrrolodione-based polymer solar cells. Nature Photon 6, 115–120 (2012). https://doi.org/10.1038/nphoton.2011.317

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.317

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing