Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Dissipative solitons for mode-locked lasers

Abstract

Dissipative solitons are localized formations of an electromagnetic field that are balanced through an energy exchange with the environment in presence of nonlinearity, dispersion and/or diffraction. Their growing use in the area of passively mode-locked lasers is remarkable: the concept of a dissipative soliton provides an excellent framework for understanding complex pulse dynamics and stimulates innovative cavity designs. Reciprocally, the field of mode-locked lasers serves as an ideal playground for testing the concept of dissipative solitons and revealing their unusual dynamics. This Review provides basic definitions of dissipative solitons, summarizes their implications for the design of high-energy mode-locked fibre laser cavities, highlights striking emerging dynamics such as dissipative soliton molecules, pulsations, explosions and rain, and finally provides an outlook for dissipative light bullets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The concept of dissipative solitons.
Figure 2: High-energy dissipative solitons.
Figure 3: Dissipative soliton molecules.
Figure 4: Soliton explosions in a mode-locked Ti:sapphire laser.
Figure 5: Soliton rain in a mode-locked fibre laser.
Figure 6: Towards a mode-locked cavity soliton laser.

Similar content being viewed by others

References

  1. Akhmediev, N. & Ankiewicz, A. Solitons, nonlinear pulses and beams Ch. 2,13 (Chapman and Hall, 1997).

    MATH  Google Scholar 

  2. Picholle, E., Montes, C., Leycuras, C., Legrand, O. & Botineau, J. Observation of dissipative superluminous solitons in a Brillouin fiber ring laser. Phys. Rev. Lett. 66, 1454–1457 (1991).

    ADS  Google Scholar 

  3. Vanin, E. V. et al. Dissipative optical solitons. Phys. Rev. A 49, 2806–2811 (1994).

    ADS  Google Scholar 

  4. Kerner, B. S. & Osipov, V. V. Autosolitons: A new approach to problems of self-organization and turbulence (Kuwer Academic Publishers, 1994).

    Google Scholar 

  5. Grigoryan, V. S. & Muradyan, T. S. Evolution of light pulses into autosolitons in nonlinear amplifying media. J. Opt. Soc. Am. B 8, 1757–1765 (1991).

    ADS  Google Scholar 

  6. Purwins, H.-G., Bödeker, H. U. & Amiranashvili, Sh. Dissipative solitons. Adv. Phys. 59, 485–701 (2010).

    ADS  Google Scholar 

  7. Akhmediev, N. & Ankiewicz, A. (eds.) Dissipative solitons (Springer, 2005).

    MATH  Google Scholar 

  8. Akhmediev, N. & Ankiewicz, A. (eds.) Dissipative solitons: From optics to biology and medicine (Springer, 2008).

    MATH  Google Scholar 

  9. Nicolis, G. & Prigogine, I. Self-organization in nonequilibrium systems: From dissipative structures to order through fluctuations (John Wiley & Sons, 1977).

    MATH  Google Scholar 

  10. Soto-Crespo, J. M., Akhmediev, N. N., Afanasjev, V. V. & Wabnitz, S. Pulse solutions of the cubic-quintic complex Ginzburg–Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783–4796 (1997).

    ADS  Google Scholar 

  11. Grelu, Ph. & Soto-Crespo, J. M. Temporal soliton 'molecules' in mode-locked lasers: Collisions, pulsations and vibrations. Lect. Notes Phys. 751, 137–173 (2008).

    MathSciNet  MATH  Google Scholar 

  12. Crasovan, L.-C. et al. Soliton 'molecules': Robust clusters of spatio-temporal solitons. Phys. Rev. E 67, 046610 (2003).

    ADS  Google Scholar 

  13. Stratmann, M., Pagel, T. & Mitschke F. Experimental observation of temporal soliton molecules. Phys. Rev. Lett. 95, 143902 (2005).

    ADS  Google Scholar 

  14. Akhmediev, N., Soto-Crespo, J. M. & Town, G. Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: Complex Ginzburg–Landau equation approach. Phys. Rev. E 63, 056602 (2001).

    ADS  Google Scholar 

  15. Siegman, A. E. Lasers Ch. 27 (University Science Books, 1986).

    Google Scholar 

  16. Haus, H. A. A theory of fast saturable absorber modelocking. J. Appl. Phys. 46, 3049–3058 (1975).

    ADS  Google Scholar 

  17. Haus, H. A., Fujimoto, J. G. & Ippen, E. P. Structures for additive pulse mode locking. J. Opt. Soc. Am. B 8, 2068–2076 (1991).

    ADS  Google Scholar 

  18. Bekki, N. & Nozaki, K. Formation of spatial patterns and holes in the generalized Ginzburg–Landau equation. Phys. Lett. A 110, 133–135 (1985).

    ADS  Google Scholar 

  19. Van Saarloos, W. & Hohenberg, P. C. Pulses and fronts in the complex Ginzburg–Landau equation near a subcritical bifurcation. Phys. Rev. Lett. 64, 749–752 (1990).

    ADS  Google Scholar 

  20. Aranson, I. S. & Kramer, L. The world of the complex Ginzburg–Landau equation. Rev. Mod. Phys. 74, 99–143 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  21. Thual, O. & Fauve S. Localized structures generated by subcritical instabilities. J. Phys. France 49, 1829–1833 (1988).

    Google Scholar 

  22. Soto-Crespo, J. M., Akhmediev, N. & Afanasjev, V. Stability of the pulse-like solutions of the quintic complex Ginzburg–Landau equation. J. Opt. Soc. Am. 13, 1439–1449 (1996).

    ADS  Google Scholar 

  23. Kutz, J. N. Mode-locked soliton lasers. SIAM Rev. 48, 629–678 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  24. Komarov, A., Leblond, H. & Sanchez, F. Quintic complex Ginzburg–Landau model for ring fiber lasers. Phys. Rev. E 72, 025604(R) (2005).

    ADS  Google Scholar 

  25. Ding, E. & Kutz, J. N. Operating regimes, split-step modeling, and the Haus master mode-locking model. J. Opt. Soc. Am. B 26, 2290–2300 (2009).

    ADS  Google Scholar 

  26. Zavyalov, A., Iliew, R., Egorov, O. & Lederer, F. Lumped versus distributed description of mode-locked fiber lasers. J. Opt. Soc. Am. B 27, 2313–2321 (2010).

    ADS  Google Scholar 

  27. Lederer, M. J. et al. Multipulse operation of a Ti:sapphire laser mode locked by an ion-implanted semiconductor saturable-absorber mirror. J. Opt. Soc. Am. B 16, 895–904 (1999).

    ADS  Google Scholar 

  28. Zavyalov, A., Iliew, R., Egorov, O. & Lederer, F. Discrete family of dissipative soliton pairs in mode-locked fiber lasers. Phys. Rev. A 79, 053841 (2009).

    ADS  Google Scholar 

  29. Maimistov, A. Evolution of solitary waves which are approximately solitons of the nonlinear Schrödinger equation. J. Exp. Theor. Phys. 77, 727–731 (1993).

    ADS  MathSciNet  Google Scholar 

  30. Ankiewicz, A. & Akhmediev, N. Comparison of Lagrangian approach and method of moments for reducing dimensionality of soliton dynamical systems. Chaos 18, 033129 (2008).

    ADS  MathSciNet  MATH  Google Scholar 

  31. Jirauschek, C. & Ilday. F. Ö. Semianalytic theory of self-similar optical propagation and mode locking using a shape-adaptive model pulse. Phys. Rev. A 83, 063809 (2011).

    ADS  Google Scholar 

  32. Martinez, O. E., Fork, R. L. & Gordon, J. P. Theory of passively mode-locked lasers including self-phase modulation and group-velocity dispersion. Opt. Lett. 9, 156–158 (1984).

    ADS  Google Scholar 

  33. Soto-Crespo, J. M., Akhmediev, N. N., Afanasjev, V. V. & Wabnitz, S. Pulse solutions of the cubic–quintic complex Ginzburg–Landau equation in the case of normal dispersion. Phys. Rev. E 55, 4783–4796 (1997).

    ADS  Google Scholar 

  34. Tamura, K., Ippen, E. P. & Haus, H. A. Pulse dynamics in stretched-pulse fiber lasers. Appl. Phys. Lett. 67, 158–160 (1995).

    ADS  Google Scholar 

  35. Kalashnikov, V. L., Podivilov, E., Chernykh, A. & Apolonski, A. Chirped-pulse oscillators: Theory and experiment. Appl. Phys. B 83, 503–510 (2006).

    ADS  Google Scholar 

  36. Renninger, W. H., Chong, A. & Wise, F. W. Giant-chirp oscillators for short-pulse fiber amplifiers. Opt. Lett. 33, 3025–3027 (2008).

    ADS  Google Scholar 

  37. Bale, B., Boscolo, S. & Turitsyn, S. Dissipative dispersion-managed solitons in mode-locked lasers. Opt. Lett. 21, 3286–3288 (2009).

    ADS  Google Scholar 

  38. Ilday, F. Ö., Buckley, J. R., Clark, W. G. & Wise, F. W. Self-similar evolution of parabolic pulses in a laser. Phys. Rev. Lett. 92, 213902 (2004).

    ADS  Google Scholar 

  39. Oktem, B., Ülgüdür, C. & Ilday, F. Ö. Soliton–similariton fibre laser. Nature Photon. 4, 307–311 (2010).

    Google Scholar 

  40. Bale, B. G. & Wabnitz, S. Strong spectral filtering for a mode-locked similariton fiber laser. Opt. Lett. 35, 2466–2468 (2010).

    ADS  Google Scholar 

  41. Chong, A., Renninger, W. H. & Wise, F. W. All-normal dispersion femtosecond fiber laser with pulse energy above 20 nJ. Opt. Lett. 32, 2408–2410 (2007).

    ADS  Google Scholar 

  42. An, J., Kim, D., Dawson, J. W., Messerly, M. J. & Barty, C. P. J. Grating-less, fiber based oscillator that generates 25 nJ pulses at 80 MHz, compressible to 150 fs. Opt. Lett. 32, 2010–2012 (2007).

    ADS  Google Scholar 

  43. Kieu, K., Renninger, W. H., Chong, A. & Wise, F. W. Sub-100 fs pulses at watt-level powers from a dissipative-soliton fiber laser. Opt. Lett. 34, 593–595 (2009).

    ADS  Google Scholar 

  44. Lecaplain, C., Ortaç, B. & Hideur A. High-energy femtosecond pulses from a dissipative soliton fiber laser. Opt. Lett. 34, 3731–3733 (2009).

    ADS  Google Scholar 

  45. Zhang, H. et al. Graphene mode locked, wavelength-tunable, dissipative soliton fiber laser. Appl. Phys. Lett. 96, 111112 (2010).

    ADS  Google Scholar 

  46. Ortaç, B., Baumgartl, M., Limpert, J. & Tünnermann, A. Approaching microjoule-level pulse energy with mode-locked femtosecond fiber laser. Opt. Lett. 34, 1585–1587 (2009).

    ADS  Google Scholar 

  47. Kelleher, E. J. R. et al. Generation and direct measurement of giant chirp in a passively mode-locked laser. Opt. Lett. 34, 3526–3528 (2009).

    ADS  Google Scholar 

  48. Chang, W., Ankiewicz, A., Soto-Crespo, J. M. & Akhmediev, N. Dissipative soliton resonances. Phys. Rev. A 78, 023830 (2008).

    ADS  Google Scholar 

  49. Grelu, Ph., Chang, W., Ankiewicz, A., Soto-Crespo, J. M. & Akhmediev, N. Dissipative soliton resonance as a guideline for high-energy pulse laser oscillators. J. Opt. Soc. Am. B 27, 2336–2341 (2010).

    ADS  Google Scholar 

  50. Ding, E., Grelu, Ph. & Kutz, J. N. Dissipative soliton resonance in a passively mode-locked fiber laser. Opt. Lett. 36, 1146–1148 (2011).

    ADS  Google Scholar 

  51. Kalashnikov, V. L. Chirped dissipative solitons of the complex cubic-quintic nonlinear Ginzburg–Landau equation. Phys. Rev. E 80, 046606 (2009).

    ADS  Google Scholar 

  52. Kalashnikov, V. L. & Apolonski, A. Energy scalability of mode-locked oscillators: A completely analytical approach to analysis. Opt. Express 18, 25757–25770 (2010).

    ADS  Google Scholar 

  53. Wu, X., Tang, D. Y., Zhang, H. & Zhao, L. M. Dissipative soliton resonance in an all-normal dispersion erbium-doped fiber laser. Opt. Express 17, 5580–5584 (2009).

    ADS  Google Scholar 

  54. Liu, X. Pulse evolution without wave breaking in a strongly dissipative-dispersive laser system. Phys. Rev. A 81, 053819 (2010).

    ADS  Google Scholar 

  55. Gordon, J. P. Interaction forces among solitons in optical fibers. Opt. Lett. 8, 396–398 (1983).

    Google Scholar 

  56. Malomed, B. Bound solitons in the nonlinear Schrödinger–Ginzburg–Landau equation. Phys. Rev. A 44, 6954–6957 (1991).

    ADS  MathSciNet  Google Scholar 

  57. Akhmediev, N. N., Ankiewicz, A. & Soto-Crespo, J. M. Multisoliton solutions of the complex Ginzburg–Landau equation. Phys. Rev. Lett. 79, 4047–4051 (1997).

    ADS  MathSciNet  MATH  Google Scholar 

  58. Grelu, Ph., Belhache, F., Gutty, F. & Soto-Crespo, J. M. Phase-locked soliton pairs in a stretched-pulse fiber laser. Opt. Lett. 27, 966–968 (2002).

    ADS  Google Scholar 

  59. Tang. D. Y., Man, W. S., Tam, H. Y. & Drummond, P. D. Observation of bound states of solitons in a passively mode-locked fiber laser. Phys. Rev. A 64, 033814 (2001).

    ADS  Google Scholar 

  60. Seong, N. H. & Kim, D. Y. Experimental observation of stable bound solitons in a figure-eight fiber laser. Opt. Lett. 27, 1321–1323 (2002).

    ADS  Google Scholar 

  61. Grelu, Ph., Béal, J. & Soto-Crespo, J. M. Soliton pairs in a fiber laser: from anomalous to normal average dispersion regime. Opt. Express 11, 2238–2243 (2003).

    ADS  Google Scholar 

  62. Hideur, A. et al. Ultra-short bound states generation with a passively mode-locked high-power Yb-doped double-clad fiber laser. Opt. Commun. 225, 71–78 (2003).

    ADS  Google Scholar 

  63. Martel, G. et al. On the possibility of observing bound soliton pairs in a 'wave-breaking-free' mode-locked fiber laser. Opt. Lett. 32, 343–345 (2007).

    ADS  Google Scholar 

  64. Richardson, D. J., Laming, R. I., Payne, D. N., Phillips, M. W. & Matsas, V. J. 320 fs soliton generation with passively mode-locked erbium fibre laser. Electron. Lett. 27, 730–732 (1991).

    Google Scholar 

  65. Guy, M. J., Noske, D. U. & Taylor, J. R. Generation of femtosecond soliton pulses by passively mode locking of an ytterbium-erbium figure-of-eight fiber laser. Opt. Lett. 18, 1447–1449 (1993).

    ADS  Google Scholar 

  66. Spielmann, Ch., Curley, P. F., Brabec, T. & Krausz, F. Ultrabroadband femtosecond lasers. IEEE J. Quant. Electron. 30, 1100–1114 (1994).

    ADS  Google Scholar 

  67. Lai, M., Nicholson, J. & Rudolph, W. Multiple pulse operation of a femtosecond Ti:sapphire laser. Opt. Commun. 142, 45–49 (1997).

    ADS  Google Scholar 

  68. Olivier, M. & Piché, M. Origin of the bound states of pulses in the stretched-pulse fiber laser. Opt. Express 17, 405–418 (2009).

    ADS  Google Scholar 

  69. Soto-Crespo, J. M., Akhmediev, N., Grelu, Ph. & Belhache, F. Quantized separations of phase-locked soliton pairs in fiber lasers. Opt. Lett. 28, 1757–1759 (2003).

    ADS  Google Scholar 

  70. Soto-Crespo, J. M., Grapinet, M., Grelu, Ph. & Akhmediev, N. Bifurcations and multiple-period soliton pulsations in a passively mode-locked fiber laser. Phys. Rev. E 70, 066612 (2004).

    ADS  Google Scholar 

  71. Bale, B., Kieu, K., Kutz, J. N. & Wise, F. Transition dynamics for multi-pulsing in mode-locked lasers. Opt. Express 17, 23137–23146 (2009).

    ADS  Google Scholar 

  72. Grapinet, M. & Grelu, Ph. Vibrating soliton pairs in a mode-locked laser cavity. Opt. Lett. 31, 2115–2117 (2006).

    ADS  Google Scholar 

  73. Soto-Crespo, J. M., Grelu, Ph., Akhmediev, N. & Devine N. Soliton complexes in dissipative systems: Vibrating, shaking and mixed soliton pairs. Phys. Rev. E 75, 016613 (2007).

    ADS  Google Scholar 

  74. Turaev, D., Vladimirov, A. G. & Zelik S. Chaotic bound state of localized structures in the complex Ginzburg–Landau equation. Phys. Rev. E 75, 045601(R) (2007).

    ADS  Google Scholar 

  75. Leblond, H., Komarov, A., Salhi, M., Haboucha, A. & Sanchez, F. 'Cis' bound states of three localized pulses of the cubic–quintic CGL equation. J. Opt. A 8, 319–326 (2006).

    ADS  Google Scholar 

  76. Akhmediev, N., Soto-Crespo, J. M., Grapinet, M. & Grelu, Ph. Dissipative soliton interactions inside a fiber laser cavity. Opt. Fibre Technol. 11, 209–228 (2005).

    ADS  Google Scholar 

  77. Roy, V., Olivier, M., Babin, F. & Piché, M. Dynamics of periodic pulse collisions in a strongly dissipative-dispersive system. Phys. Rev. Lett. 94, 203903 (2005).

    ADS  Google Scholar 

  78. Haboucha, A., Leblond, H., Salhi, M., Komarov, A. & Sanchez, F. Analysis of soliton pattern formation in passively mode-locked fiber lasers. Phys. Rev. A 78, 043806 (2008).

    ADS  Google Scholar 

  79. Sylvestre, T., Coen, S., Emplit, Ph. & Haelterman, M. Self-induced modulational instability laser revisited: Normal dispersion and dark-pulse train generation. Opt. Lett. 27, 482–484 (2002).

    ADS  Google Scholar 

  80. Cundiff, S. T., Soto-Crespo, J. M. & Akhmediev, N. Experimental evidence for soliton explosions. Phys. Rev. Lett. 88, 073903 (2002).

    ADS  Google Scholar 

  81. Latas, S. C. V. & Ferreira, M. F. S. Soliton explosion control by higher-order effects. Opt. Lett. 35, 1771–1773 (2010).

    ADS  Google Scholar 

  82. Chouli, S. & Grelu, Ph. Soliton rains in a fiber laser: An experimental study. Phys. Rev. A 81, 063829 (2010).

    ADS  Google Scholar 

  83. Amrani, F. et al. Passively mode-locked erbium-doped double-clad fiber laser operating at the 322nd harmonic. Opt. Lett. 34, 2120–2122 (2009).

    ADS  Google Scholar 

  84. Katz, M., Gat, O. & Fischer, B. Noise-induced oscillations in fluctuations of passively mode-locked pulses. Opt. Lett. 35, 297–299 (2010).

    ADS  Google Scholar 

  85. Kaliteevstii, N. A., Rozanov, N. N. & Fedorov, S. V. Formation of laser bullets. Opt. Spectrosc. 85, 533–534 (1998).

    Google Scholar 

  86. Vladimirov, A. G., Fedorov, S. V., Kaliteevskii, N. A., Khodova, G. V. & Rosanov N. N. Numerical investigation of laser localized structures. J. Opt. B 1, 101–106 (1999).

    ADS  Google Scholar 

  87. Akhmediev, N., Soto-Crespo, J. M. & Grelu, Ph. Spatio-temporal optical solitons in nonlinear dissipative media: from stationary light bullets to pulsating complexes. Chaos 17, 037112 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  88. Silberberg, Y. Collapse of optical pulses. Opt. Lett. 15, 1282–1284 (1990).

    ADS  Google Scholar 

  89. Malomed, B. A., Mihalache, D., Wise, F. & Torner, L. Spatiotemporal solitons. J. Opt. B 7, R53–R72 (2005).

    ADS  Google Scholar 

  90. Wise, F. & Di Trapani, P. The hunt for light bullets spatio-temporal solitons. Opt. Photon. News 13, 28–32 (February, 2002).

    ADS  Google Scholar 

  91. Ackemann, T., Firth, W. J. & Oppo, G. L. Fundamentals and applications of spatial dissipative solitons in photonic devices. Adv. Atom. Mol. Opt. Phys. 57, 323–421 (2009).

    ADS  Google Scholar 

  92. Firth, W. J. & Scroggie, A. J. Optical bullet holes: Robust controllable localized states of a nonlinear cavity. Phys. Rev. Lett. 76, 1623–1626 (1996).

    ADS  Google Scholar 

  93. Barland, S. et al. Cavity solitons as pixels in semiconductor microcavities. Nature 419, 699–702 (2002).

    ADS  Google Scholar 

  94. Brambilla, M., Maggipinto, T., Patera, G. & Colombo, L. Cavity light bullets: Three-dimensional localized structures in a nonlinear optical resonator. Phys. Rev. Lett. 93, 203901 (2004).

    ADS  Google Scholar 

  95. Chen, Y.-F., Beckwitt, K., Wise, F. & Malomed, B. A. Criteria for the experimental observation of multidimensional optical solitons in saturable media. Phys. Rev. E 70, 046610 (2004).

    ADS  Google Scholar 

  96. Abdollahpour, D., Suntsov, S., Papazoglou, D. G. & Tzortakis, S. Spatiotemporal Airy light bullets in the linear and nonlionear regimes. Phys. Rev. Lett. 105, 253901 (2010).

    ADS  Google Scholar 

  97. Minardi, S. et al. Three-dimensional light bullets in arrays of waveguides. Phys. Rev. Lett. 105, 263901 (2010).

    ADS  Google Scholar 

  98. Léo, F. et al. Temporal cavity solitons in one-dimensional Kerr media as bits in an all-optical buffer. Nature Photon. 4, 471–476 (2010).

    ADS  Google Scholar 

  99. Tanguy, Y., Ackemann, T., Firth, W. J. & Jäger, R. Realization of a semiconductor-based cavity soliton laser. Phys. Rev. Lett. 100, 013907 (2008).

    ADS  Google Scholar 

  100. Genevet, P., Barland, S., Giudici, M. & Tredicce, J. R. Cavity soliton laser based on mutually coupled semiconductor microresonators. Phys. Rev. Lett. 101, 123905 (2008).

    ADS  Google Scholar 

  101. Radwell, N. et al. Switching spatial dissipative solitons in a VCSEL with frequency selective feedback. Eur. Phys. J. D 59, 121–131 (2010).

    ADS  Google Scholar 

  102. Soto-Crespo, J. M., Grelu, Ph. & Akhmediev, N. Dissipative rogue waves: extreme pulses generated by passively mode-locked lasers. Phys. Rev. E 84, 016604 (2011).

    ADS  Google Scholar 

Download references

Acknowledgements

Ph.G. is supported by the Agence Nationale de la Recherche (project ANR-2010-BLANC-0417-01). N.A. acknowledges support from the Australian Research Council (Discovery Project DP0985394).

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to this Review article.

Corresponding author

Correspondence to Philippe Grelu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grelu, P., Akhmediev, N. Dissipative solitons for mode-locked lasers. Nature Photon 6, 84–92 (2012). https://doi.org/10.1038/nphoton.2011.345

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.345

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing