Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Surface plasmon–polariton amplifiers and lasers

Abstract

Amplifiers and lasers based on surface plasmon–polaritons (SPPs) have been studied for around three decades. Research in this area has experienced particularly significant growth over the past decade, resulting in the achievement of several important milestones. Convincing demonstrations of SPP amplification and lasing have been reported for various systems involving single-interface, long-range, short-range and resonant SPPs. Diverse metallic structures such as planes, films, stripes, wires and particles (some on the nanoscale) have been integrated with gain materials. Although the prospects for SPP amplifiers and lasers are bright, the field is embryonic, and much remains to be explored and improved. This Review discusses this rapidly progressing area and summarizes the most important progress achieved so far. Research directions that warrant further investigation are also suggested.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Stimulated emission of SPPs.
Figure 2: LRSPP amplifier.
Figure 3: SPP lasers.
Figure 4: The spaser.

Similar content being viewed by others

References

  1. Maier, S. A. Plasmonics: Fundamentals and Applications (Springer, 2007).

    Book  Google Scholar 

  2. Stiles, P. L., Dieringer, D. J., Shah, N. C. & Van Duyne, R. P. Surface-enhanced Raman spectroscopy. Ann. Rev. Anal. Chem. 1, 601–626 (2008).

    Article  Google Scholar 

  3. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  4. Gramotnev, D. K. & Bozhevolnyi, S. I. Plasmonics beyond the diffraction limit. Nature Photon. 4, 83–91 (2010).

    Article  ADS  Google Scholar 

  5. Kawata, S., Inouye, Y. & Verma, P. Plasmonics for near-field nano-imaging and superlensing. Nature Photon. 3, 388–394 (2009).

    Article  ADS  Google Scholar 

  6. Anker, J. N. et al. Biosensing with plasmonic nanosensors. Nature Mater. 7, 442–453 (2008).

    Article  ADS  Google Scholar 

  7. Homola, J. Surface plasmon resonance sensors for detection of chemical and biological species. Chem. Rev. 108, 462–493 (2008).

    Article  Google Scholar 

  8. Ebbesen, T. W., Genet, C. & Bozhevolnyi, S. I. Surface plasmon circuitry. Phys. Today 61, 44–50 (2008).

    Article  ADS  Google Scholar 

  9. Palik, E. D. (ed.) Handbook of Optical Constants of Solids (Academic, 1985).

    Google Scholar 

  10. Arakawa, E. T., Williams, M. W., Hamm, R. N. & Ritchie, R. H. Effect of damping on surface plasmon dispersion. Phys. Rev. Lett. 31, 1127–1129 (1973).

    Article  ADS  Google Scholar 

  11. Zia, R., Selker, M. D., Catrysse, P. B. & Brongersma, M. L. Geometries and materials for subwavelength surface plasmon modes. J. Opt. Soc. Am. A 21, 2442–2446 (2004).

    Article  ADS  Google Scholar 

  12. Berini, P. Figures of merit for surface plasmon waveguides. Opt. Express 14, 13030–13042 (2006).

    Article  ADS  Google Scholar 

  13. Nkoma, J., Loudon, R. & Tilley, D. R. Elementary properties of surface plasmons. J. Phys. C 7, 3547–3559 (1974).

    Article  ADS  Google Scholar 

  14. Archambault, A., Marquier, F. & Greffet, J.-J. Quantum theory of spontaneous and stimulated emission of surface plasmons. Phys. Rev. B 82, 035411 (2010).

    Article  ADS  Google Scholar 

  15. Matloob, R., Loudon, R., Barnett, S. M. & Jeffers, J. Electromagnetic field quantization in absorbing dielectrics. Phys. Rev. A 52, 4823–4838 (1995).

    Article  ADS  Google Scholar 

  16. Barnes, W. L. Fluorescence near interfaces: the role of photonic mode density. J. Mod. Opt. 45, 661–669 (1998).

    Article  ADS  Google Scholar 

  17. Plotz, G., Simon, H. & Tucciarone, J. Enhanced total reflection with surface plasmons. J. Opt. Soc. Am. 69, 419–422 (1979).

    Article  ADS  Google Scholar 

  18. Sudarkin, A. N. & Demkovich, P. A. Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium. Sov. Phys. Tech. Phys. 34, 764–766 (1988).

    Google Scholar 

  19. Sirtori, C. et al. Long-wavelength (λ ≈ 11.5 μm) semiconductor lasers with waveguides based on surface plasmons. Opt. Lett. 23, 1366–1368 (1998).

    Article  ADS  Google Scholar 

  20. Tredicucci, A. et al. Single-mode surface-plasmon laser. App. Phys. Lett. 76, 2164–2166 (2000).

    Article  ADS  Google Scholar 

  21. Avrutsky, I. Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain. Phys. Rev. B. 70, 155416 (2004).

    Article  ADS  Google Scholar 

  22. Nezhad, M. P., Tetz, K. & Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express 12, 4072–4079 (2004).

    Article  ADS  Google Scholar 

  23. Seidel, J., Grafstrom, S. & Eng, L. Stimulated emission of surface plasmons at the interface between a silver film and an optically pumped dye solution. Phys. Rev. Lett. 94, 177401 (2005).

    Article  ADS  Google Scholar 

  24. Noginov, M. A. et al. Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium. Opt. Express 16, 1385–1392 (2008).

    Article  ADS  Google Scholar 

  25. Kumar, P., Tripathi, V. K. & Liu, C. S. A surface plasmon laser. J. Appl. Phys 104, 033306 (2008).

    Article  ADS  Google Scholar 

  26. Noginov, M. A. et al. Stimulated emission of surface plasmon polaritons. Phys. Rev. Lett. 101, 226806 (2008).

    Article  ADS  Google Scholar 

  27. Li, R., Banerjee, A. & Grebel, H. The possibility for surface plasmon lasers. Opt. Express 17, 1622–1627 (2009).

    Article  ADS  Google Scholar 

  28. Banerjee, A., Li, R. & Grebel, H. Surface plasmon lasers with quantum dots as gain media. Appl. Phys. Lett. 95, 251106 (2009).

    Article  ADS  Google Scholar 

  29. Bolger, P. M. et al. Amplified spontaneous emission of surface plasmon polaritons and limitations on the increase of their propagation length. Opt. Lett. 35, 1197–1199 (2010).

    Article  ADS  Google Scholar 

  30. Lu, F. F. et al. Surface plasmon polariton enhanced by optical parametric amplification in nonlinear hybrid waveguide. Opt. Express 19, 2858–2865 (2011).

    Article  ADS  Google Scholar 

  31. Kovacs, G. J. Optical excitation of surface plasma waves in an indium film bounded by dielectric layers. Thin Solid Films 60, 33–44 (1979).

    Article  ADS  Google Scholar 

  32. Fukui, M., So, V. C. Y. & Normandin, R. Lifetimes of surface plasmons in thin silver films. Phys. Status Solidi B 91, K61–K64 (1979).

    Article  ADS  Google Scholar 

  33. Sarid, D. Long-range surface-plasma waves on very thin metal films. Phys. Rev. Lett. 47, 1927–1930 (1981).

    Article  ADS  Google Scholar 

  34. Berini, P. Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys. Rev. B 61, 10484–10503 (2000).

    Article  ADS  Google Scholar 

  35. Okamoto, T., H'Dhili, F. & Kawata, S. Towards plasmonic band gap laser. Appl. Phys. Lett. 85, 3968–3970 (2004).

    Article  ADS  Google Scholar 

  36. Winter, G., Wedge, S. & Barnes, W. L. Can lasing at visible wavelength be achieved using the low-loss long-range surface plasmon-polariton mode? New J. Phys. 8, 125 (2006).

    Article  ADS  Google Scholar 

  37. Alam, M. Z., Meier, J., Aitchison, J. S. & Mojahedi, M. Gain assisted surface plasmon polariton in quantum well structures. Opt. Express 15, 176–182 (2007).

    Article  ADS  Google Scholar 

  38. Genov, D. A., Ambati, M. & Zhang, X. Surface plasmon amplification in planar metal films. IEEE J. Quant. Electron. 43, 1104–1108 (2007).

    Article  ADS  Google Scholar 

  39. Okamoto, T., Simonen, J. & Kawata, S. Plasmonic band gaps of structured metallic thin films evaluated for a surface plasmon laser using the coupled-wave approach. Phys. Rev. B 77, 115425 (2008).

    Article  ADS  Google Scholar 

  40. De Leon, I. & Berini, P. Theory of surface plasmon-polariton amplification in planar structures incorporating dipolar gain media. Phys. Rev. B 78, 161401(R) (2008).

    Article  ADS  Google Scholar 

  41. Ambati, M. et al. Observation of stimulated emission of surface plasmon polaritons. Nano Lett. 8, 3998–4001 (2008).

    Article  ADS  Google Scholar 

  42. Ambati, M., Genov, D. A., Oulton, R. F. & Zhang, X. Active plasmonics: surface plasmon interaction with optical emitters. IEEE J. Sel. Top. Quant. Electron. 14, 1395–1403 (2008).

    Article  ADS  Google Scholar 

  43. Kovyakov, A., Zakharian, A. R., Gundu, K. M. & Darmanyan, S. A. Giant optical resonances due to gain-assisted Bloch surface plasmon. Appl. Phys. Lett. 94, 151111 (2009).

    Article  ADS  Google Scholar 

  44. Berini, P. Long-range surface plasmon polaritons. Adv. Opt. Photon. 1, 484–588 (2009).

    Article  Google Scholar 

  45. De Leon, I. & Berini, P. Modeling surface plasmon-polariton gain in planar metallic structures. Opt. Express 17, 20191–20202 (2009).

    Article  ADS  Google Scholar 

  46. De Leon, I. & Berini, P. Amplification of long-range surface plasmons by a dipolar gain medium. Nature Photon. 4, 382–387 (2010).

    Article  ADS  Google Scholar 

  47. Gather, M. C., Meerholz, K., Danz, N. & Leosson K. Net optical gain in a plasmonic waveguide embedded in a fluorescent polymer. Nature Photon. 4, 457–461 (2010).

    Article  ADS  Google Scholar 

  48. H'Dhili, F., Okamoto, T., Simonen, J. & Kawata, S. Improving the emission efficiency of periodic plasmonic structures for lasing applications. Opt. Comm. 284, 561–566 (2011).

    Article  ADS  Google Scholar 

  49. Chen, Y.-H. & Guo, L. J. High Q long-range surface plasmon polariton modes in sub-wavelength metallic microdisk cavity. Plasmonics 6, 183–188 (2011).

    Article  Google Scholar 

  50. De Leon, I. & Berini, P. Spontaneous emission in long-range surface plasmon-polariton amplifiers. Phys. Rev. B 83, 081414(R) (2011).

    Article  ADS  Google Scholar 

  51. De Leon, I. & Berini, P. Measuring gain and noise in active long-range surface plasmon-polariton waveguides. Rev. Sci. Instr. 82, 033107 (2011).

    Article  ADS  Google Scholar 

  52. Flynn, R. A. et al. A room-temperature semiconductor spaser operating near 1.5 μm. Opt. Express 19, 8954–8961 (2011).

    Article  ADS  MathSciNet  Google Scholar 

  53. Pile, D. F. P. et al. Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl. Phys. Lett. 87, 261114 (2005).

    Article  ADS  Google Scholar 

  54. Dionne, J. A, Sweatlock, L. A., Atwater, H. A. & Polman A. Plasmon slot waveguides: towards chip-scale propagation with subwavelength-scale localization. Phys. Rev. B 73, 035407 (2006).

    Article  ADS  Google Scholar 

  55. Maier, S. A. Gain-assisted propagation of electromagnetic energy in sub-wavelength surface plasmon polariton gap waveguides. Opt. Comm. 258, 295–299 (2006).

    Article  ADS  Google Scholar 

  56. Yu, Z., Veronis, G., Fan, S. & Brongersma, M. L. Gain-induced switching in metal-dielectric-metal plasmonic waveguides. Appl. Phys. Lett. 92, 041117 (2008).

    Article  ADS  Google Scholar 

  57. Chang, S.-W. & Chuang, S. L. Normal modes for plasmonic nanolasers with dispersive and inhomogeneous media. Opt. Lett. 34, 91–93 (2009).

    Article  ADS  Google Scholar 

  58. Hill, M. T. et al. Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    Article  ADS  Google Scholar 

  59. Chang, S.-W. & Chuang, S. L. Fundamental formulation for plasmonic nanolasers. IEEE J. Quant. Electron. 45, 1014–1023 (2009).

    Article  ADS  Google Scholar 

  60. Li, D. B. & Ning, C. Z. Giant modal gain, amplified surface plasmon-polariton propagation, and slowing down of energy velocity in a metal-semiconductor-metal structure. Phys. Rev. B 80, 153304 (2009).

    Article  ADS  Google Scholar 

  61. Chen, X., Bhola, B., Huang, Y. & Ho, S. T. Multi-level multi-thermal-electron FDTD simulation of plasmonic interaction with semiconducting gain media: applications to plasmonic amplifiers and nano-lasers. Opt. Express 18, 17220–17238 (2010).

    Article  ADS  Google Scholar 

  62. Hill, M. T. Status and prospects for metallic and plasmonic nano-lasers. J. Opt. Soc. Am. B 27, B36–B44 (2010).

    Article  Google Scholar 

  63. Hohenau, A. et al. Dielectric optical elements for surface plasmons. Opt. Lett. 30, 892–895 (2005).

    Article  ADS  Google Scholar 

  64. Grandidier, J. et al. Gain-assisted propagation in a plasmonic waveguide at telecom wavelength. Nano Lett. 9, 2935–2939 (2009).

    Article  ADS  Google Scholar 

  65. Krishnan, A., Frisbie, S. P., Grave de Peralta, L. & Bernussi, A. A. Plasmon stimulated emission in arrays of bimetallic structures coated with dye-doped dielectric. Appl. Phys. Lett. 96, 111104 (2010).

    Article  ADS  Google Scholar 

  66. Grandidier, J. et al. Leakage radiation microscopy of surface plasmon coupled emission: investigation of gain-assisted propagation in an integrated plasmonic waveguide. J. Microscopy 239, 167–172 (2010).

    MathSciNet  Google Scholar 

  67. Colas Des Francs, G. et al. Optical gain, spontaneous and stimulated emission of surface plasmon polaritons in confined plasmonic waveguide. Opt. Express 18, 16327–16334 (2010).

    Article  ADS  Google Scholar 

  68. Radko, I. P., Nielsen, M. G., Albrektsen, O. & Bozhevolnyi, S. I. Stimulated emission of surface plasmon polaritons by lead-sulfide quantum dots at near infra-red wavelengths. Opt. Express 18, 18633–18641 (2010).

    Article  ADS  Google Scholar 

  69. Rao, R. & Tang, T. Study on active surface plasmon waveguides and design of a nanoscale lossless surface plasmon waveguide. J. Opt. Soc. Am. B 28, 1258–1265 (2011).

    Article  ADS  Google Scholar 

  70. Alam, M. Z., Meier, J., Aitchison, J. S. & Mojahedi, M. Super mode propagation in low index medium. Proc. CLEO paper JThD112 (2007).

  71. Oulton, R. F., Sorger, V. J., Genov, D. A., Pile, D. F. P. & Zhang, X. A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nature Photon. 2, 496–500 (2008).

    Article  Google Scholar 

  72. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  73. Ma, R.-M., Oulton, R. F., Sorger, V. J., Bartal, G. & Zhang, X. Room-temperature sub-diffraction-limited plasmon laser by total internal reflection. Nature Mater. 10, 110–113 (2011).

    Article  ADS  Google Scholar 

  74. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2003).

    Article  Google Scholar 

  75. Pelton, M., Aizpurua, J. & Bryant, G. Metal-nanoparticle plasmonics. Laser Photon. Rev. 2, 136–159 (2008).

    Article  ADS  Google Scholar 

  76. Bergman, D. J. & Stockman, M. I. Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems. Phys. Rev. Lett. 90, 027402 (2003).

    ADS  Google Scholar 

  77. Li, K., Li, X., Stockman, M. I. & Bergman, D. J. Surface plasmon amplification by stimulated emission in nanolenses. Phys. Rev. B 71, 115409 (2005).

    Article  ADS  Google Scholar 

  78. Protsenko, I. E., Uskov, A. V., Zaimidoroga, O. A., Samoilov, V. N. & O'Reilly, E. P. Dipole nanolaser. Phys. Rev. A 71, 063812 (2005).

    Article  ADS  Google Scholar 

  79. Stockman, M. I. Spasers explained. Nature Photon. 2, 327–329 (2008).

    Article  ADS  Google Scholar 

  80. Chang, S.-W., Ni, C.-Y. A. & Chuang, S. L. Theory for bowtie plasmonic nanolasers. Opt. Express 16, 10580–10595 (2008).

    Article  ADS  Google Scholar 

  81. Rosenthal, A. S. & Ghannam, T. Dipole nanolasers: a study of their quantum properties. Phys. Rev. A 79, 043824 (2009).

    Article  ADS  Google Scholar 

  82. Noginov, M. A. et al. Demonstration of a spaser-based nanolaser. Nature 460, 1110–1113 (2009).

    Article  ADS  Google Scholar 

  83. Stockman, M. I. The spaser as a nanoscale quantum generator and ultrafast amplifier. J. Opt. 12, 024004 (2010).

    Article  ADS  Google Scholar 

  84. Lawandy, N. M. Localized surface plasmon singularities in amplifying media. Appl. Phys. Lett. 85, 5040–5042 (2004).

    Article  ADS  Google Scholar 

  85. Noginov. et al. Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium. Opt. Lett. 31, 3022–3024 (2006).

    Article  ADS  Google Scholar 

  86. Gordon, J. A. & Ziolkowski, R. W. The design and simulated performance of a coated nano-particle laser. Opt. Express 15, 2622–2653 (2007).

    Article  ADS  Google Scholar 

  87. Li, Z.-Y. & Xia, Y. Metal nanoparticles with gain toward single-molecule detection by surface-enhanced Raman scattering. Nano Lett. 10, 243–249 (2010).

    Article  ADS  Google Scholar 

  88. Quinten, M., Leitner, A., Krenn, J. R. & Aussenegg, F. R. Electromagnetic energy transport via linear chains of silver nanoparticles. Opt. Lett. 23, 1331–1333 (1998).

    Article  ADS  Google Scholar 

  89. Citrin, D. S. Plasmon-polariton transport in metal-nanoparticle chains embedded in a gain medium. Opt. Lett. 31, 98–100 (2006).

    Article  ADS  Google Scholar 

  90. Thylén, L. et al. Limits on integration as determined by power dissipation and signal-to-noise ratio in loss-compensated photonic integrated circuits based on metal/quantum-dot materials. IEEE J. Quant. Electron. 46, 518–524 (2010).

    Article  ADS  Google Scholar 

  91. Holmström, P., Thylén, L. & Bratkovsky, A. Composite metal/quantum-dot nanoparticle-array waveguides with compensated loss. Appl. Phys. Lett. 97, 073110 (2010).

    Article  ADS  Google Scholar 

  92. Zhang, H. & Ho, H.-P. Low-loss plasmonic waveguide based on gain-assisted periodic metal mesosphere chains. Opt. Express 18, 23035–23040 (2010).

    Article  ADS  Google Scholar 

  93. Novotny, L. & Hafner, C. Light propagation in a cylindrical waveguide with a complex metallic dielectric function. Phys. Rev. E 50, 4094–4106 (1994).

    Article  ADS  Google Scholar 

  94. Govyadinov, A. A. & Podolskiy, V. A. Gain-assisted slow to superluminal group velocity manipulation in nanowaveguides. Phys. Rev. Lett. 97, 223902 (2006).

    Article  ADS  Google Scholar 

  95. Yang, Z.-J. et al. Surface plasmons amplifications in single Ag nanoring. Opt. Express 18, 4006–4011 (2010).

    Article  ADS  Google Scholar 

  96. Handapangoda, D., Rukhlenko, I. D., Premaratne, M. & Jagadish, C. Optimization of gain-assisted waveguiding in metal-dielectric nanowires. Opt. Lett. 35, 4190–4192 (2010).

    Article  ADS  Google Scholar 

  97. Kitur, J. K., Podolskiy, V. A. & Noginov, M. A. Stimulated emission of surface plasmon polaritons in a microcylinder cavity. Phys. Rev. Lett. 106, 183903 (2011).

    Article  ADS  Google Scholar 

  98. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  99. Nezhad, M. P. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon. 4, 395–399 (2010).

    Article  ADS  Google Scholar 

  100. Chang, S.-W., Lin, T.-R. & Chuang, S. L. Theory of plasmonic Fabry–Pérot nanolasers. Opt. Express 18, 15039–15053 (2010).

    Article  ADS  Google Scholar 

  101. Coldren, L. A. & Corzine, S. W. Diode lasers and photonic integrated circuits (Wiley, 1995).

    Google Scholar 

  102. Kirstaedter, N. et al. Gain and differential gain of single layer InAs/GaAs quantum dot injection lasers. Appl. Phys. Lett. 69, 1226–1228 (1996).

    Article  ADS  Google Scholar 

  103. Yan, Y. C. et al. Erbium-doped phosphate glass waveguide on silicon with 4.1 dB/cm gain at 1.535 μm. Appl. Phys. Lett. 71, 2922–2924 (1997).

    Article  ADS  Google Scholar 

  104. Svendsen, W., Ellegaard, O. & Schou, J. Laser ablation deposition measurements from silver and nickel. Appl. Phys. A 63, 247–255 (1996).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

P.B. and I.D.L. acknowledge financial support from the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Berini.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berini, P., De Leon, I. Surface plasmon–polariton amplifiers and lasers. Nature Photon 6, 16–24 (2012). https://doi.org/10.1038/nphoton.2011.285

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.285

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing