Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Laser mode feeding by shaking quantum dots in a planar microcavity

Abstract

Semiconductor light emission can be changed considerably in an optical resonator1. Prerequisite is that the electronic transitions involved in light generation are in resonance with a cavity mode. Although resonance can be arranged through dedicated fabrication, there are cases where this is virtually impossible. As an example, we study a planar microcavity containing an inhomogeneous quantum dot ensemble with a spectral broadening much larger than the optical mode width, so that resonance is achieved for a tiny dot fraction only. Still, the laser threshold can be crossed at moderate optical pumping. We demonstrate that strain pulses generated by ultrafast acoustics techniques can be used to modulate the transition energies so that resonance with the optical mode is dynamically induced for a much larger dot fraction. As a result, the emission output can be enhanced by more than two orders of magnitude, which is potentially useful for modulating light sources.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characteristics of the quantum-dot microcavity.
Figure 2: Experimental set-up and strain pulse propagation.
Figure 3: Intensity modulation under stationary optical excitation.
Figure 4: Intensity modulation under pulsed optical excitation.

Similar content being viewed by others

References

  1. Vahala, K. J. Optical microcavities. Nature 424, 839–846 (2003).

    Article  ADS  Google Scholar 

  2. Gerard, J. M. et al. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Phys. Rev. Lett. 81, 1110–1113 (1998).

    Article  ADS  Google Scholar 

  3. Weisbuch, C., Nishioka, M., Ishikawa, A. & Arakawa, Y. Observation of the coupled exciton–photon mode splitting in a semiconductor quantum microcavity. Phys. Rev. Lett. 69, 3314–3317 (1992).

    Article  ADS  Google Scholar 

  4. Reithmaier, J. P. et al. Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197–200 (2004).

    Article  ADS  Google Scholar 

  5. Yoshie, T. et al. Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200–203 (2004).

    Article  ADS  Google Scholar 

  6. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  7. Young, R. J. et al. Improved fidelity of triggered entangled photons from single quantum dots. New J. Phys. 8, 29 (2006).

    Article  ADS  Google Scholar 

  8. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  9. Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    Article  ADS  Google Scholar 

  10. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  ADS  Google Scholar 

  11. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  ADS  Google Scholar 

  12. Balili, R., Hartwell, V., Snoke, D., Pfeiffer, L. & West, K. Bose–Einstein condensation of microcavity polaritons in a trap. Science 316, 1007–1010 (2007).

    Article  ADS  Google Scholar 

  13. Amo, A. et al. Collective fluid dynamics of a polariton condensate in a semiconductor microcavity. Nature 457, 291–295 (2009).

    Article  ADS  Google Scholar 

  14. Kistner, C. et al. Demonstration of strong coupling via electro-optical tuning in high-quality QD–micropillar systems. Opt. Express 16, 15006–15012 (2008).

    Article  ADS  Google Scholar 

  15. Reitzenstein, S. et al. Control of the strong light–matter interaction between an elongated In0.3Ga0.7As quantum dot and a micropillar cavity using external magnetic fields. Phys. Rev. Lett. 103, 127401 (2009).

    Article  ADS  Google Scholar 

  16. Scherbakov, A. V. et al. Chirping of an optical transition by an ultrafast acoustic soliton train in a semiconductor quantum well. Phys. Rev. Lett. 99, 057402 (2007).

    Article  ADS  Google Scholar 

  17. Berstermann, T. et al. Terahertz polariton sidebands generated by ultrafast strain pulses in an optical semiconductor microcavity. Phys. Rev. B 80, 075301 (2009).

    Article  ADS  Google Scholar 

  18. Kaniber, M. et al. Investigation of the nonresonant dot–cavity coupling in two-dimensional photonic crystal nanocavities. Phys. Rev. B 77, 161303(R) (2008).

    Article  ADS  Google Scholar 

  19. Ates, S. et al. Non-resonant dot–cavity coupling and its potential for resonant single-quantum-dot spectroscopy. Nature Photon. 3, 724–728 (2009).

    Article  ADS  Google Scholar 

  20. Press, D. et al. Photon antibunching from a single quantum-dot–microcavity system in the strong coupling regime. Phys. Rev. Lett. 98, 117402 (2007).

    Article  ADS  Google Scholar 

  21. Hennessy, K. et al. Quantum nature of strongly coupled single quantum dot–cavity system. Nature 445, 896–899 (2007).

    Article  ADS  Google Scholar 

  22. Winger, M. et al. Explanation of photon correlation in the far-off-resonance optical emission from a quantum-dot–cavity system. Phys. Rev. Lett. 103, 207403 (2009).

    Article  ADS  Google Scholar 

  23. Thomsen, C., Grahn, H. T., Maris, H. J. & Tauc, J. Surface generation and detection of phonons by picosecond light pulses. Phys. Rev. B 34, 4129–4138 (1986).

    Article  ADS  Google Scholar 

  24. Karpman, V. I. Non-Linear Waves in Dispersive Media (Pergamon Press, 1975).

    Book  Google Scholar 

  25. Lanzillotti-Kimura, N. D., Fainstain, A., Balseiro, C. A. & Jusserand, B. Phonon engineering with acoustic nanocavities: theoretical considerations on phonon molecules, band structures, and acoustic Bloch oscillations. Phys. Rev. B 75, 024301 (2007).

    Article  ADS  Google Scholar 

  26. Berstermann, T. et al. Optical bandpass switching by modulating a microcavity using ultrafast acoustics. Phys. Rev. B 81, 085316 (2010).

    Article  ADS  Google Scholar 

  27. Tanebe, T., Kuramochi, E., Taniyama, H. & Notomi, M. Electro-optic adiabatic wavelength shifting and Q switching demonstrated using a p–i–n integrated photonic crystal nanocavity. Opt. Lett. 35, 3895–3897 (2010).

    Article  ADS  Google Scholar 

  28. Maune, B. et al. Optically triggered Q-switched photonic crystal laser. Opt. Express 13, 4699–4707 (2005).

    Article  ADS  Google Scholar 

  29. Beardsley, R. P., Akimov, A. V., Henini, M. & Kent, A. J. Coherent terahertz sound amplification and spectral line narrowing in a Stark ladder superlattice. Phys. Rev. Lett. 104, 085501 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support by the Deutsche Forschungsgemeinschaft (project BA 1549/14-1), the Russian Academy of Sciences and the State of Bavaria.

Author information

Authors and Affiliations

Authors

Contributions

A.V.A., M.Ba. and D.R.Y. developed the idea for the experiment. C.B., M.Bo. and A.V.S. performed the experiment. C.B. processed the data. C.B., A.V.A. and M.Ba. analysed and interpreted the results and wrote the manuscript. C.S., S.H. and A.F. fabricated the microcavity sample. All authors discussed the results and the manuscript.

Corresponding author

Correspondence to C. Brüggemann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 302 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brüggemann, C., Akimov, A., Scherbakov, A. et al. Laser mode feeding by shaking quantum dots in a planar microcavity. Nature Photon 6, 30–34 (2012). https://doi.org/10.1038/nphoton.2011.269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing