Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre

Abstract

Dynamic optical isolation with all-optical switching capability is in great demand in advanced optical communications and all-optical signal processing systems. Most conventional optical isolators rely on Faraday rotation and are realized using micro/nanofabrication techniques, but it is not always straightforward to incorporate magneto-optical crystals into these compact systems. Here, we report the experimental demonstration of a reconfigurable all-optical isolator based on optical excitation of a gigahertz guided acoustic mode in a micrometre-sized photonic crystal fibre core. This device has remarkable advantages over its passive counterparts, including a large dynamic range of isolation, fast switching capability and reversibility, which provide new functionality that is useful in various types of all-optical systems. Devices based on similar physical principles could also be realized in CMOS-compatible silicon on-chip platforms.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principles of unidirectional opto-acoustic interactions.
Figure 2: Schematic diagrams of the optically controlled unidirectional optical devices based on forward SIPS.
Figure 3: Experimental set-up.
Figure 4: Input and output spectra of forward- and backward-propagating signals.
Figure 5: Dependence of signal transmission of the device on input control power.
Figure 6: Switching characteristics of the device.

Similar content being viewed by others

References

  1. Aplet, L. J. & Carson, J. W. A Faraday effect optical isolator. Appl. Opt. 3, 544−545 (1964).

    Article  ADS  Google Scholar 

  2. Shirasaki, M. & Asama, K. Compact optical isolator for fibers using birefringent wedges. Appl. Opt. 21, 4296−4299 (1982).

    Article  ADS  Google Scholar 

  3. Sato, T., Sun, J., Kasahara, R. & Kawakami, S. Lens-free in-line optical isolators. Opt. Lett. 24, 1337−1339 (1999).

    Article  ADS  Google Scholar 

  4. Yu, Z. & Fan, S. Complete optical isolation created by indirect interband photonic transitions. Nature Photon. 3, 91−94 (2009).

    Article  ADS  Google Scholar 

  5. Manipatruni, S., Robinson, J. T. & Lipson, M. Optical nonreciprocity in optomechanical structures. Phys. Rev. Lett. 102, 213903 (2009).

    Article  ADS  Google Scholar 

  6. Soljacic, M., Luo, C., Joannopoulos, J. D. & Fan, S. Nonlinear photonic crystal microdevices for optical integration. Opt. Lett. 28, 637−639 (2003).

    Article  ADS  Google Scholar 

  7. Gallo, K., Assanto, G., Parameswaran, K. R. & Fejer, M. M. All-optical diode in a periodically poled lithium niobate waveguide. Appl. Phys. Lett. 79, 314−316 (2001).

    Article  ADS  Google Scholar 

  8. Wang, Q. et al. A bidirectional tunable optical diode based on periodically poled LiNbO3 . Opt. Express 18, 7340−7346 (2010).

    Article  ADS  Google Scholar 

  9. Miroshnichenko, A. E., Brasselet, E. & Kivshar, Y. S. Reversible optical nonreciprocity in periodic structures with liquid crystals. Appl. Phys. Lett. 96, 063302 (2010).

    Article  ADS  Google Scholar 

  10. Carmon, T., Rokhsari, H., Yang, L., Kippenberg, T. J. & Vahala, K. J. Temporal behavior of radiation-pressure-induced vibrations of an optical microcavity phonon mode. Phys. Rev. Lett. 94, 223902 (2005).

    Article  ADS  Google Scholar 

  11. Thompson, J. D. et al. Strong dispersive coupling of a high-finesse cavity to a micromechanical membrane. Nature 452, 72−76 (2009).

    Article  ADS  Google Scholar 

  12. Eichenfield, M., Chan, J., Camacho, R. M., Vahala, K. J. & Painter, O. Optomechanical crystals. Nature 462, 78−82 (2009).

    Article  ADS  Google Scholar 

  13. Kang, M. S., Brenn, A. & Russell, P. St. J. All-optical control of gigahertz acoustic resonances by forward stimulated interpolarization scattering in a photonic crystal fiber. Phys. Rev. Lett. 105, 153901 (2010).

    Article  ADS  Google Scholar 

  14. Kang, M. S., Nazarkin, A., Brenn, A. & Russell, P. St. J. Tightly trapped acoustic phonons in photonic crystal fibres as highly nonlinear artificial Raman oscillators. Nature Phys. 5, 276−280 (2009).

    Article  ADS  Google Scholar 

  15. Dainese, P. et al. Stimulated Brillouin scattering from multi-GHz-guided acoustic phonons in nanostructured photonic crystal fibres. Nature Phys. 2, 388−392 (2006).

    Article  ADS  Google Scholar 

  16. Xiao, L., Demokan, M. S., Jin, W., Wang, Y. & Zhao, C.-L. Fusion splicing photonic crystal fibers and conventional single-mode fibers: microhole collapse effect. J. Lightwave Technol. 25, 3563−3574 (2007).

    Article  ADS  Google Scholar 

  17. Peral, E. & Yariv, A. Degradation of modulation and noise characteristics of semiconductor lasers after propagation in optical fiber due to a phase shift induced by stimulated Brillouin scattering. IEEE J. Quantum Electron. 35, 1185−1195 (1999).

    Article  ADS  Google Scholar 

  18. Biryukov, A. S., Sukharev, M. E. & Dianov, E. M. Excitation of sound waves upon propagation of laser pulses in optical fibres. Quantum Electron. 32, 765−775 (2002).

    Article  ADS  Google Scholar 

  19. Wiederhecker, G. S., Brenn, A., Fragnito, H. L. & Russell, P. St. J. Coherent control of ultrahigh-frequency acoustic resonances in photonic crystal fibers. Phys. Rev. Lett. 100, 203903 (2008).

    Article  ADS  Google Scholar 

  20. Abedin, K. S. Stimulated Brillouin scattering in single-mode tellurite glass fiber. Opt. Express 14, 11766−11772 (2006).

    Article  ADS  Google Scholar 

  21. Pernice, W. H. P., Li, M. & Tang, H. X. A mechanical Kerr effect in deformable photonic media. Appl. Phys. Lett. 95, 123507 (2009).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

P.St.J.R. conceived the idea. M.S.K. designed and performed the experiments. M.S.K. and A.B. carried out the theoretical analysis. All authors discussed the results and wrote the manuscript.

Corresponding author

Correspondence to M. S. Kang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kang, M., Butsch, A. & Russell, P. Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre. Nature Photon 5, 549–553 (2011). https://doi.org/10.1038/nphoton.2011.180

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.180

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing