Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Active spatial control of plasmonic fields

Abstract

The field of plasmonics1 offers a route to control light fields with metallic nanostructures through the excitation of surface plasmon polaritons2. These surface waves, bound to a metal dielectric interface, can tightly confine electromagnetic energy3. Active control over surface plasmon polaritons has potential for applications in sensing4, photovoltaics5, quantum communication6,7, nanocircuitry8,9, metamaterials10,11 and super-resolution microscopy12. We achieve here active control of plasmonic fields using a digital spatial light modulator. Optimizing the plasmonic phases through feedback, we focus surface plasmon polaritons at a freely prechosen point on the surface of a nanohole array. Digital addressing and scanning of surface plasmon polaritons without mechanical motion may enable novel interdisciplinary applications of advanced plasmonic devices in cell microscopy, optical data storage and sensing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental ‘set-up’.
Figure 2: Amplitude projection for uniform phase profile.
Figure 3: Dynamic focusing of SPPs.

Similar content being viewed by others

References

  1. Barnes, W. L., Dereux, A. & Ebbesen, T. W. Surface plasmon subwavelength optics. Nature 424, 824–830 (2003).

    Article  ADS  Google Scholar 

  2. Polman, A. Applied physics: plasmonics applied. Science 322, 5903, 868–869 (2008).

    Article  Google Scholar 

  3. Schuller, J. A. et al. Plasmonics for extreme light concentration and manipulation. Nature Mater. 9, 193–204 (2010).

    Article  ADS  Google Scholar 

  4. Prodan, E., Radloff, C., Halas, N. J. & Nordlander, P. A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003).

    Article  ADS  Google Scholar 

  5. Atwater, H. A. & Polman, A. Plasmonics for improved photovoltaic devices. Nature Mater. 9, 205–213 (2010).

    Article  ADS  Google Scholar 

  6. Altewischer, E., van Exter, M. P. & Woerdman, J. P. Plasmon-assisted transmission of entangled photons. Nature 418, 304–306 (2002).

    Article  ADS  Google Scholar 

  7. Akimov, A. V. et al. Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature 450, 402–406 (2007).

    Article  ADS  Google Scholar 

  8. Ebbesen, T. W., Genet, C. & Bozhevolnyi, S. I. Surface-plasmon circuitry. Phys. Today 61, 44–50 (2008).

    Article  ADS  Google Scholar 

  9. Engheta, N. Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials. Science 317, 1698–1702 (2007).

    Article  ADS  Google Scholar 

  10. Liu, N. et al. Plasmonic analogue of electromagnetically induced transparency at the Drude damping limit. Nature Mater. 8, 758–762 (2009).

    Article  ADS  Google Scholar 

  11. Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article  ADS  Google Scholar 

  12. Fang, N., Lee, H., Sun, C. & Zhang, X. Sub-diffraction-limited optical imaging with a silver superlens. Science 308, 534–537 (2005).

    Article  ADS  Google Scholar 

  13. Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206–4209 (1995).

    Article  ADS  Google Scholar 

  14. Vellekoop, I. M., van Putten, E. G., Lagendijk, A. & Mosk, A. P. Demixing light paths inside disordered metamaterials. Opt. Express 16, 67–80 (2008).

    Article  ADS  Google Scholar 

  15. Cizmar, T., Mazilu, M. & Dholakia, K. In situ wavefront correction and its application to micromanipulation. Nature Photon. 4, 388–394 (2010).

    Article  ADS  Google Scholar 

  16. Dionne, J. A., Diest, K., Sweatlock, L. A. & Atwater, H. A. PlasMOStor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett. 9, 897–902 (2009).

    Article  ADS  Google Scholar 

  17. MacDonald, K. F., Samson, Z. L., Stockman, M. I. & Zheludev, N. I. Ultrafast active plasmonics. Nature Photon. 3, 55–58 (2009).

    Article  ADS  Google Scholar 

  18. Utikal, T., Stockman, M. I., Heberle, A. P., Lippitz, M. & Giessen, H. All-optical control of the ultrafast dynamics of a hybrid plasmonic system. Phys. Rev. Lett. 104, 113903 (2010).

    Article  ADS  Google Scholar 

  19. Temnov, V. V. et al. Active magneto-plasmonics in hybrid metal-ferromagnet structures. Nature Photon. 4, 107–111 (2010).

    Article  ADS  Google Scholar 

  20. Durach, M., Rusina, A., Stockman, M. I. & Nelson, K. Toward full spatiotemporal control on the nanoscale. Nano Lett. 7, 3145–3149 (2007).

    Article  ADS  Google Scholar 

  21. Aeschlimann, M. et al. Adaptive subwavelength control of nano-optical fields. Nature 446, 301–304 (2007).

    Article  ADS  Google Scholar 

  22. Li, X. & Stockman, M. I. Highly efficient spatiotemporal coherent control in nanoplasmonics on a nanometer-femtosecond scale by time reversal. Phys. Rev. B 77, 195109 (2008).

    Article  ADS  Google Scholar 

  23. Volpe, G., Cherukulappurath, S., Parramon, R. J., Molina-Terriza, G. & Quidant, R. Controlling the optical near field of nanoantennas with spatial phase-shaped beams. Nano Lett. 9, 3608–3611 (2009).

    Article  ADS  Google Scholar 

  24. Garcia-Vidal, F. J., Martin-Moreno, L., Ebbesen, T. W. & Kuipers, L. Light passing through subwavelength apertures. Rev. Mod. Phys. 82, 729–787 (2010).

    Article  ADS  Google Scholar 

  25. Sentenac, A. & Chaumet, P. C. Subdiffraction light focusing on a grating substrate. Phys. Rev. Lett. 101, 013901 (2008).

    Article  ADS  Google Scholar 

  26. Bartal, G., Lerosey, G. & Zhang, X. Subwavelength dynamic focusing in plasmonic nanostructures using time reversal. Phys. Rev. B, 79, 201103 (2009).

    Article  ADS  Google Scholar 

  27. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  28. Lalanne, P. & Hugonin, J. P. Interaction between optical nano-objects at metallo-dielectric interfaces. Nature Phys. 2, 551–556 (2006).

    Article  ADS  Google Scholar 

  29. Devaux, E., Ebbesen, T. W., Weeber, J. C. & Dereux, A. Launching and decoupling surface plasmons via micro gratings. Appl. Phys. Lett., 83, 4936–4938 (2003).

    Article  ADS  Google Scholar 

  30. Popoff, S. M. et al. Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media. Phys. Rev. Lett. 104, 100601 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank E. van Putten and J. Cesario for stimulating and helpful discussions, and H. Zeijlermaker for sample fabrication. This work is part of the research programme of the ‘Stichting voor Fundamenteel Onderzoek der Materie’, which is financially supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek.

Author information

Authors and Affiliations

Authors

Contributions

B.G. was the primary researcher on this project, developing and building the set-up, carrying out all experiments and analysis, and writing the paper. All authors made essential contributions to the project and take full responsibility for the results presented.

Corresponding author

Correspondence to Bergin Gjonaj.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 287 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gjonaj, B., Aulbach, J., Johnson, P. et al. Active spatial control of plasmonic fields. Nature Photon 5, 360–363 (2011). https://doi.org/10.1038/nphoton.2011.57

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.57

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing