Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Controlling birefringence in dielectrics

Abstract

Birefringence, from the very essence of the word itself, refers to the splitting of light rays into two parts. In natural birefringent materials, this splitting is a beautiful phenomenon, resulting in the perception of a double image. In optical metamaterials, birefringence is often an unwanted side effect of forcing a device designed through transformation optics1,2,3,4,5,6 to operate in dielectrics. One polarization is usually implemented in dielectrics, and the other is sacrificed7,8. Here we show, with techniques beyond transformation optics, that this need not be the case, that both polarizations can be controlled to perform useful tasks in dielectrics, and that rays, at all incident angles, can even follow different trajectories through a device and emerge together as if the birefringence did not exist at all. A number of examples are shown, including a combination Maxwell fisheye/Luneburg lens that performs a useful task and is achievable with current fabrication materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Four examples of birefringent dielectric devices designed with the methods described.

Similar content being viewed by others

References

  1. Service, R. F. & Cho, A. Strange new tricks with light. Science 330, 1622 (2010).

    Article  ADS  Google Scholar 

  2. Leonhardt, U. Optical conformal mapping. Science 312, 1777–1780 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  3. Pendry, J. B., Schurig, D. & Smith, D. R. Controlling electromagnetic fields. Science 312, 1780–1782 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  4. Shalaev, V. M. Transforming light. Science 322, 384–386 (2008).

    Article  Google Scholar 

  5. Chen, H. Y., Chan, C. T. & Sheng, P. Transformation optics and metamaterials. Nature Mater. 9, 387–396 (2010).

    Article  ADS  Google Scholar 

  6. Leonhardt, U. & Philbin, T. G. Geometry and Light: The Science of Invisibility (Dover, 2010).

    MATH  Google Scholar 

  7. Schurig, D. et al. Metamaterial electromagnetic cloak at microwave frequencies. Science 314, 977–980 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  8. Ma, Y. G., Ong, C. K., Tyc, T. & Leonhardt, U. An omnidirectional retroreflector based on the transmutation of dielectric singularities. Nature Mater. 8, 639–642 (2009).

    Article  ADS  Google Scholar 

  9. Pendry, J. B. Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000).

    Article  ADS  Google Scholar 

  10. Cai, W. S., Chettiar, U. K., Kildishev, A. V. & Shalaev, V. M. Optical cloaking with metamaterials. Nature Photon. 1, 224–227 (2007).

    Article  ADS  Google Scholar 

  11. Gabrielli, L. H., Cardenas, J., Poitras, C. B. & Lipson, M. Silicon nanostructure cloak operating at optical frequencies. Nature Photon. 3, 461–463 (2009).

    Article  ADS  Google Scholar 

  12. Leonhardt, U. & Tyc, T. Broadband invisibility by non-Euclidean cloaking. Science 323, 110–112 (2009).

    Article  ADS  Google Scholar 

  13. Liu, R. et al. Broadband ground-plane cloak. Science 323, 366–369 (2009).

    Article  ADS  Google Scholar 

  14. Valentine, J., Li, J. S., Zentgraf, T., Bartal, G. & Zhang, X. An optical cloak made of dielectrics. Nature Mater. 8, 568–571 (2009).

    Article  ADS  Google Scholar 

  15. Ergin, T., Stenger, N., Brenner, P., Pendry, J. B. & Wegener, M. Three-dimensional invisibility cloak at optical wavelengths. Science 328, 337–339 (2010).

    Article  ADS  Google Scholar 

  16. Landy, N. I., Sajuyigbe, S., Mock, J. J., Smith, D. R. & Padilla, W. J. Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008).

    Article  ADS  Google Scholar 

  17. Luneburg, R. K. & Herzberger, M. Mathematical Theory of Optics (Brown University Graduate School, 1944).

    MATH  Google Scholar 

  18. Gutman, A. S. Modified Luneberg lens. J. Appl. Phys. 25, 855–859 (1954).

    Article  ADS  Google Scholar 

  19. Morgan, S. P. General solution of the Luneberg lens problem. J. Appl. Phys. 29, 1358–1368 (1958).

    Article  ADS  MathSciNet  Google Scholar 

  20. Kwon, D. H. & Werner, D. H. Polarization splitter and polarization rotator designs based on transformation optics. Opt. Express 16, 18731–18738 (2008).

    Article  ADS  Google Scholar 

  21. Hendi, A., Henn, J. & Leonhardt, U. Ambiguities in the scattering tomography for central potentials. Phys. Rev. Lett. 97, 073902 (2006).

    Article  ADS  Google Scholar 

  22. Akbarzadeh, A. & Danner, A. J. Generalization of ray tracing in a linear inhomogeneous anisotropic medium: a coordinate-free approach. J. Opt. Soc. Am. A 27, 2558–2562 (2010).

    Article  ADS  Google Scholar 

  23. Danner, A. J. Visualizing invisibility: metamaterials-based optical devices in natural environments. Opt. Express 18, 3332–3337 (2010).

    Article  ADS  Google Scholar 

  24. Minano, J. C. Perfect imaging in a homogeneous three-dimensional region. Opt. Express 14, 9627–9635 (2006).

    Article  ADS  Google Scholar 

  25. Leonhardt, U. Perfect imaging without negative refraction. New J. Phys. 11, 093040 (2009).

    Article  ADS  Google Scholar 

  26. Ma, Y. G., Sahebdivan, S., Ong, C. K., Tyc, T. & Leonhardt, U. Evidence for subwavelength imaging with positive refraction. New J. Phys. 13, 033016 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge funding from the Singapore Ministy of Education Tier II Academic Research Fund (grant no. MOE2009-T2-1-086). U.L. was supported by the Royal Society. T.T. acknowledges grants nos MSM0021622409 and MSM0021622419 from the Czech Ministry of Education.

Author information

Authors and Affiliations

Authors

Contributions

A.D. devised the main theory presented in the text and created ray-traced images. T.T. contributed to designing the interior focusing and multifocal length lenses. U.L. proposed the original problem and contributed to potential applications of the theory.

Corresponding author

Correspondence to Aaron J. Danner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danner, A., Tyc, T. & Leonhardt, U. Controlling birefringence in dielectrics. Nature Photon 5, 357–359 (2011). https://doi.org/10.1038/nphoton.2011.53

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.53

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing