Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Lensless X-ray imaging in reflection geometry

Abstract

Lensless X-ray imaging techniques such as coherent diffraction imaging1,2,3,4,5,6,7,8 and ptychography9,10,11, and Fourier transform holography12,13,14,15,16,17 can provide time-resolved, diffraction-limited images. Nearly all examples of these techniques have focused on transmission geometry, restricting the samples and reciprocal spaces that can be investigated. We report a lensless X-ray technique developed for imaging in Bragg and small-angle scattering geometries, which may also find application in transmission geometries. We demonstrate this by imaging a nanofabricated pseudorandom binary structure in small-angle reflection geometry. The technique can be used with extended objects, places no restriction on sample size, and requires no additional sample masking. The realization of X-ray lensless imaging in reflection geometry opens up the possibility of single-shot imaging of surfaces in thin films, buried interfaces in magnetic multilayers, organic photovoltaic and field-effect transistor devices, or Bragg planes in a single crystal.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental geometry and microscopy of screen and test pattern.
Figure 2: Holographic data, Fourier transform and phase-reconstructed image.
Figure 3: Back-propagated images and comparison to SEM image.
Figure 4: Acutance and image quality metric.

Similar content being viewed by others

References

  1. Nugent, K. A. Coherent methods in the X-ray sciences. Adv. Phys. 59, 1–99 (2010).

    Article  ADS  Google Scholar 

  2. Miao, J., Charalambous, P., Kirz, J. & Sayre, D. Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400, 342–344 (1999).

    Article  ADS  Google Scholar 

  3. Chapman, H. N. et al. Femtosecond time-delay X-ray holography. Nature 448, 676–679 (2007).

    Article  ADS  Google Scholar 

  4. Chapman, H. N. et al. High-resolution ab initio three-dimensional X-ray diffraction microscopy. J. Opt. Soc. Am. A 23, 1179–1200 (2006).

    Article  ADS  Google Scholar 

  5. Nugent, K. A., Peele, A. G., Chapman, H. N. & Mancuso, A. P. Unique phase recovery for nonperiodic objects. Phys. Rev. Lett. 91, 203902 (2003).

    Article  ADS  Google Scholar 

  6. Shapiro, D. et al. Biological imaging by soft X-ray diffraction microscopy. Proc. Nat. Acad. Sci. USA 102, 15343–15346 (2005).

    Article  ADS  Google Scholar 

  7. Nelson, J. et al. High-resolution X-ray diffraction microscopy of specifically labeled yeast cells. Proc. Nat. Acad. Sci. USA 107, 7235–7239 (2010).

    Article  ADS  Google Scholar 

  8. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    Article  ADS  Google Scholar 

  9. Rodenburg, J. M. et al. Hard-X-ray lensless imaging of extended objects. Phys. Rev. Lett. 98, 034801 (2007).

    Article  ADS  Google Scholar 

  10. Thibault, P. et al. High-resolution scanning X-ray diffraction microscopy. Science 321, 379–382 (2008).

    Article  ADS  Google Scholar 

  11. Dierolf, M. et al. Ptychographic coherent diffractive imaging of weakly scattering specimens. New J. Phys. 12, 035017 (2010).

    Article  ADS  Google Scholar 

  12. McNulty, I. et al. High-resolution imaging by Fourier transform X-ray holography. Science 256, 1009–1012 (1992).

    Article  ADS  Google Scholar 

  13. Marchesini, S. et al. Massively parallel X-ray holography. Nature Photon. 2, 560–563 (2008).

    Article  Google Scholar 

  14. Eisebitt, S. et al. Lensless imaging of magnetic nanostructures by X-ray spectro-holography. Nature 432, 885–888 (2004).

    Article  ADS  Google Scholar 

  15. Chamard, V. et al. Three-dimensional X-ray Fourier transform holography: the Bragg case. Phys. Rev. Lett. 104, 165501 (2010).

    Article  ADS  Google Scholar 

  16. Stadler, L.-M. et al. Hard X ray holographic diffraction imaging. Phys. Rev. Lett. 100, 245503 (2008).

    Article  ADS  Google Scholar 

  17. Stickler, D. et al. Soft X-ray holographic microscopy. Appl. Phys. Lett. 96, 042501 (2010).

    Article  ADS  Google Scholar 

  18. Zhang, F., Pedrini, G. & Osten, W. Phase retrieval of arbitrary complex-valued fields through aperture-plane modulation. Phys. Rev. A 75, 043805 (2007).

    Article  ADS  Google Scholar 

  19. Johnson, I. et al. Coherent diffractive imaging using phase front modifications. Phys. Rev. Lett. 100, 155503 (2008).

    Article  ADS  Google Scholar 

  20. Quiney, H. M., Peele, A. G., Cai, Z., Paterson, D. & Nugent, K. A. Diffractive imaging of highly focused X-ray fields. Nat. Phys. 2, 101–104 (2006).

    Article  Google Scholar 

  21. Fienup, J. R. Reconstruction of a complex-valued object from the modulus of its Fourier transform using a support constraint. J. Opt. Soc. Am. A 4, 118–123 (1987).

    Article  ADS  Google Scholar 

  22. Fienup, J. R. Phase retrieval algorithms: a comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  ADS  Google Scholar 

  23. Marchesini, S. et al. X-ray image reconstruction from a diffraction pattern alone. Phys. Rev. B 68, 140101 (2003).

    Article  ADS  Google Scholar 

  24. Higgins, G. & Wolfe, R. The relation of definition to sharpness and resolving power in a photographic system. J. Opt. Soc. Am. 45, 121–129 (1955).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Marchesini of the Lawrence Berkeley National Laboratory (LBNL) for helpful discussions. This work at LBNL was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the US Department of Energy (contract no. DE-AC02-05CH11231). Work in the group of S.D.K. at U. Oregon was supported by the National Science Foundation (grant no. DMR-0506241).

Author information

Authors and Affiliations

Authors

Contributions

S.R. conceived the experiment. S.R., K.A.S. and D.P. designed the experiment. W.C. and E.H.A. fabricated the test pattern. S.C. fabricated the exit screen. D.P., K.A.S., R.S. and S.R. preformed the experiments. D.P., K.A.S. and S.R. analysed the data. S.R., K.A.S., D.P., J.J.T. and S.D.K. authored the paper. All authors discussed the results and contributed to the final manuscript.

Corresponding author

Correspondence to S. Roy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 219 kb)

Supplementary Movie

Supplementary Mpvie (AVI 1166 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, S., Parks, D., Seu, K. et al. Lensless X-ray imaging in reflection geometry. Nature Photon 5, 243–245 (2011). https://doi.org/10.1038/nphoton.2011.11

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.11

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing