Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Chalcogenide photonics

Abstract

The unique and striking material properties of chalcogenide glasses have been studied for decades, providing applications in the electronics industry, imaging and more recently in photonics. This Review summarizes progress in photonic devices that exploit the unique optical properties of chalcogenide glasses for a range of important applications, focusing on recent examples in mid-infrared sensing, integrated optics and ultrahigh-bandwidth signal processing.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Use of a photosensitive As2S3 chalcogenide film to tune the resonant frequency of a photonic crystal cavity.
Figure 2: Structure and testing of a chalcogenide microfluidic sensor.
Figure 3: Use of a chalcogenide photonic chip for transmitter optimization and demultiplexing at 1.28 Tb s−1.
Figure 4: RF spectra and recovered autocorrelation traces for the unoptimized and optimized transmitter.
Figure 5: Performance of the all-optical demultiplexer used to extract individual single data channels at a base rate of 10 Gbit s−1 from a 1.28 Tbit s−1 signal.

Similar content being viewed by others

References

  1. Frerichs, R. New optical glasses with good transparency in the infrared. J. Opt. Soc. Am. 43, 1153–1157 (1953).

    Article  ADS  Google Scholar 

  2. Hilton, A. R. Chalcogenide glasses for infra-red optics (McGraw Hill, 2010).

    Google Scholar 

  3. Tver'yanovich, Y. S. & Tverjanovich, A. Rare earth doped chalcogenide glass in semiconducting chalcogenide glass III — Applications of chalcogenide glasses (eds Fairman, R. & Ushkov, B.) 160–207 (Elsevier, 2004).

    Google Scholar 

  4. Sanghera, J. S., Shaw, L. B. & Aggarwal, I. D. Chalcogenide glass-fiber-based mid-IR sources and applications. IEEE J. Sel. Top. Quant. 15, 114–119 (2009).

    Article  Google Scholar 

  5. Zhang, X. H., Guimond, Y. & Bellec, Y. Production of complex chalcogenide glass optics by molding for thermal Imaging. J. Non-Cryst. Sol. 326, 519–523 (2003).

    Article  ADS  Google Scholar 

  6. Wang, C. C. Empirical relation between the linear and the third order nonlinear optical susceptibilities. Phys. Rev. B 2, 2045–2048 (1970).

    Article  ADS  Google Scholar 

  7. Kosa, T. I. et al. Nonlinear optical properties of silver-doped As2S3 . J. Non-Cryst. Sol. 166, 1219–1222 (1993).

    Article  ADS  Google Scholar 

  8. Harbold, J. M. et al. Highly nonlinear As–S–Se glasses for all-optical switching. Opt. Lett. 27, 119–121 (2002).

    Article  ADS  Google Scholar 

  9. Quemard, C., Smektala, F., Couderc, V., Barthelemy, A. & Lucas, J. Chalcogenide glasses with high nonlinear optical properties for telecommunications. J. Phys. Chem. Sol. 62, 1435–1440 (2001).

    Article  ADS  Google Scholar 

  10. Pelusi, M. D. et al. Applications of highly-nonlinear chalcogenide glass devices tailored for high-speed all-optical signal processing. IEEE J. Sel. Top. Quant. 14, 529–539 (2008).

    Article  Google Scholar 

  11. Phillips, J. C. Topology of covalent non-crystalline solids I: Short-range order in Chalcogenide alloys. J. Non-Cryst. Sol. 34, 153–181 (1979).

    Article  ADS  Google Scholar 

  12. Thorpe, M. F., Jacobs, D. J. & Djordjevic, B. R. The structure and rigidity of network glasses, in insulating and semiconducting glasses (ed. Boolchand, P.) 94–145 (World Scientific, 2000).

    Google Scholar 

  13. Tanaka, K. Structural phase transitions in chalcogenide glasses. Phys. Rev. B 39, 1270–1279 (1989).

    Article  ADS  Google Scholar 

  14. Boolchand, P., Georgiev, D. G. & Goodman, B. Discovery of the intermediate phase in chalcogenide glasses. J. Opt. Adv. Mat. 3, 703–720 (2001).

    Google Scholar 

  15. Bulla, D. A. P. et al. On the properties and stability of thermally evaporated Ge–As–Se thin films. App. Phys. A 96, 615–625 (2009).

    Article  ADS  Google Scholar 

  16. Street, R. A. & Mott, N. F. States in the gap in glassy semiconductors. Phys. Rev. Lett. 35, 1293–1296 (1975).

    Article  ADS  Google Scholar 

  17. Shimakawa, K., Kolobov, A. & Elliott, S. R. Photoinduced effects and metastability in amorphous semiconductors and insulators. Adv. Phys. 44, 475–588 (1995).

    Article  ADS  Google Scholar 

  18. Fritzsche, H. Light induced structural changes in glasses, in insulating and semiconducting glasses (ed. Boolchand, P.) 653–690 (World Scientific, 2000).

    Book  Google Scholar 

  19. Ovshinsky, S. R. Reversible electrical switching phenomena in disordered structures. Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  ADS  Google Scholar 

  20. Pfeiffer, G., Paesler, M. A. & Agarwal, S. C. Reversible photodarkening of amorphous arsenic chalcogens. J. Non-Cryst. Sol. 130, 111–143 (1991).

    Article  ADS  Google Scholar 

  21. Mitkova, M., Kozicki, M. N., Kim, H. C. & Alford, T. L. Thermal and photodiffusion of Ag in S-rich Ge–S amorphous films. Thin Solid Films 449, 248–253 (2004).

    Article  ADS  Google Scholar 

  22. Calvez, L., Yang, Z. Y. & Lucas, P. Light-induced matrix softening of Ge–As–Se network glasses. Phys. Rev. Lett. 101, 117402 (2008).

    Article  ADS  Google Scholar 

  23. Kolobov, A. V. & Tominaga, J. Chalcogenide glasses in optical recording: recent progress. J. Optoelectron. Adv. Mat. 4, 679–686 (2002).

    Google Scholar 

  24. Krecmer, P. et al. Reversible nanocontraction and dilatation in a solid induced by polarized light. Science 277, 1799–1802 (1997).

    Article  Google Scholar 

  25. Apling, A., Leadbetter, A. J. & Wright, A. C. Comparison of structures of vapour-deposited and bulk arsenic sulphide glasses. J. Non-Cryst. Sol. 23, 369–384 (1977).

    Article  ADS  Google Scholar 

  26. Vlcek, M. & Jain, H. Nanostructuring of chalcogenide glasses using electron beam lithography. J. Optoelectron. Adv. Mat. 8, 2108–2111 (2006).

    Google Scholar 

  27. Wong, S., Deubel, M., Perez-Willard, F., John, S. & Ozin, G. A. Direct writing of three-dimensional photonic crystals with a complete photonic bandgap in chalcogenide glasses. Adv. Mat. 18, 265–269 (2006).

    Article  Google Scholar 

  28. Viens, J.-F. et al. Fabrication and characterization of integrated optical waveguides in sulphide chalcogenide glasses. J. Light. Tech. 17, 1184–1191 (1999).

    Article  Google Scholar 

  29. Meneghini, C. & Villeneuve, A. As2S3 photo-sensitivity by two-photon absorption: holographic gratings and self-written channel waveguides. J. Opt. Soc. Am. B 15, 2946–2950 (1998).

    Article  ADS  Google Scholar 

  30. Song, S. et al. Mode tuning of quantum cascade lasers through optical processing of chalcogenide glass claddings. Appl. Phys. Lett. 89, 041115 (2006).

    Article  ADS  Google Scholar 

  31. Lee, M. et al. Photowritten high-Q cavities in two-dimensional chalcogenide glass photonic crystals. Opt. Lett. 34, 3671–3673 (2009).

    Article  ADS  Google Scholar 

  32. Faraon, A. et al. Local tuning of photonic crystal cavities using chalcogenide glasses. Appl. Phys. Lett. 92, 043123 (2008).

    Article  ADS  Google Scholar 

  33. Ho, N., Laniel, J. M., Vallée, R. & Villeneuve, A. Photo-sensitivity of As2S3 chalcogenide thin films at 1.5 μm. Opt. Lett. 28, 965–967 (2003).

    Article  ADS  Google Scholar 

  34. Yang, G. et al. A photo-stable chalcogenide glass. Opt. Express 16, 10565–10571 (2008).

    Article  ADS  Google Scholar 

  35. Zhang, X. H., Ma, H. & Lucas, J. Evaluation of glass fibers from the Ga–Ge–Sb–Se system for infrared applications. Opt. Mater. 25, 85–89 (2004).

    Article  ADS  Google Scholar 

  36. Somkuarnpanit, S. et al. Beam delivery characteristics of optical fibers for carbon monoxide lasers. Opt. Laser Eng. 23, 221–231 (1995).

    Article  Google Scholar 

  37. Kamensky, V. A., Scripachev, I. V., Snopatin, G. D., Pushkin, A. A. & Churbanov, M. F. High-power As–S glass fiber delivery instrument for pulse YAG:Er laser radiation. Appl. Opt. 37, 5596–5599 (1998).

    Article  ADS  Google Scholar 

  38. Miyashita, T. & Terunuma, Y. Optical transmission loss of As–S fiber in 1.0–55μm wavelength region. Jpn. J. Appl. Phys. 21, L75–L76 (1982).

    Article  ADS  Google Scholar 

  39. Hattori, H., Sato, S. & Fujioka, T. High power CO laser transmission through As–S glass fibers. Electron. Lett. 20, 811–812 (1984).

    Article  Google Scholar 

  40. Sanghera, J. S. & Aggarwal, I. D. Development of chalcogenide glass fiber optics at NRL. J. Non-Cryst. Sol. 213214, 63–67 (1997).

    Article  ADS  Google Scholar 

  41. Sanghera, J. S. et al. Development and infrared applications of chalcogenide glass optical fibers. Fiber Integrated Opt. 19, 251–274 (2000).

    Article  ADS  Google Scholar 

  42. Churbanov, M. F. et al. High-purity As-S-Se and As-Se-Te glasses and optical fibers. Inorg. Mater. 43, 441–447 (2007).

    Article  Google Scholar 

  43. King, W. A., Clare, A. G. & LaCourse, W. C. Laboratory preparation of highly pure As2Se3 glass. J. Non-Cryst. Sol. 181, 231–237 (1995).

    Article  ADS  Google Scholar 

  44. Susman, S., Rowland, S. C. & Volin, K. J. The purification of elemental sulphur. J. Mat. Res. 7, 1526–1533 (1992).

    Article  ADS  Google Scholar 

  45. Reitter, A. M., Sreeram, A. N., Varshneya, A. K. & Swiler, D. R. Modified preparation procedure for laboratory melting of multi-component chalcogenide glasses. J. Non-Cryst. Sol. 139, 121–128 (1992).

    Article  ADS  Google Scholar 

  46. Savage, J. A. Optical properties of chalcogenide glasses. J. Non-Cryst. Sol. 47, 101–116 (1982).

    Article  ADS  Google Scholar 

  47. Moynihan, C. T., Macedo, P. B., Maklad, M. S., Mohr, R. K. & Howard, R. E. Intrinsic and impurity infrared absorption in As2Se3 glass. J. Non-Cryst. Sol. 17, 369–385 (1975).

    Article  ADS  Google Scholar 

  48. Sanghera, J. S. Process for removing hydrogen and carbon impurities from glasses by adding a tellurium halide. US patent 5,779,757 (1998).

    Google Scholar 

  49. Lezal, D., Pedlikova, J., Gurovic, J. & Vogt, R. The preparation of chalcogenide glasses in chlorine reactive atmosphere. Ceramics 40, 55–59 (1996).

    Google Scholar 

  50. Hilton, A. R., Hayes, D. J. & Rechtin, M. D. Infrared absorption of some high-purity chalcogenide glasses. J. Non-Cryst. Sol. 17, 319–338 (1975).

    Article  ADS  Google Scholar 

  51. Adamchik, S. A., Malyshev, A. Y., Bulanov, A. D. & Bab'eva, E. N. Fine purification of sulfur from carbon by high temperature oxidation. Inorg. Mater. 37, 469–472 (2001).

    Article  Google Scholar 

  52. Schimmer, R. C. et al. Development of germanium gallium sulphide glass fibers for the 1.31 μm praseodymium-doped fiber amplifier. J. Non-Cryst. Sol. 284, 188–192 (2001).

    Article  ADS  Google Scholar 

  53. McNamara, P. et al. Core microstructured fluoride glass optical fiber for mid-infrared single-mode transmission. J. Non-Cryst. Sol. 355, 1461–1467 (2009).

    Article  ADS  Google Scholar 

  54. Nishii, J. et al. Recent advances and trends in chalcogenide glass fiber technology: a review. J. Non-Cryst. Sol. 140, 199–208 (1992).

    Article  ADS  Google Scholar 

  55. Sanghera, J. S. et al. Non-linear properties of chalcogenide glasses and fibers. J. Non-Cryst. Sol. 354, 462–467 (2008).

    Article  ADS  Google Scholar 

  56. Savage, S. D., Miller, C. A., Furniss, D. & Seddon, A. B. Extrusion of chalcogenide glass preforms and drawing to multimode optical fibers. J. Non-Cryst. Sol. 29, 3418–3427 (2008).

    Article  ADS  Google Scholar 

  57. Monro, T. M. et al. Chalcogenide holey fibers. Electron. Lett. 36, 1998–2000 (2000).

    Article  Google Scholar 

  58. Brillad, L. et al. Fabrication of complex structures of holey fibers in chalcogenide glass. Opt. Express 14, 1280–1285 (2006).

    Article  ADS  Google Scholar 

  59. Temelkuran, B. et al. Wavelength-scalable hollow optical fibers with large photonic bandgaps for CO2 laser transmission. Nature 420, 650–653 (2002).

    Article  ADS  Google Scholar 

  60. Sanghera, J. S., Shaw, L. B. & Aggarwal, I. D. Application of chalcogenide glass optical fibers. C.R. Chimie 5, 873–883 (2002).

    Article  Google Scholar 

  61. Hu, J. et al. Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15, 2307–2314 (2007).

    Article  ADS  Google Scholar 

  62. Tan, W. C. et al. Optical characterization of a-As2S3 thin films prepared by magnetron sputtering. J. Appl. Phys. 107, 033524 (2010).

    Article  ADS  Google Scholar 

  63. Huang, C. C., Hewak, D. W. & Badding, J. V. Deposition and characterization of germanium sulphide glass planar waveguides. Opt. Express 2501–2506 (2004).

  64. Youden, K. E. et al. Pulsed laser deposition of Ga–La–S chalcogenide glass thin film optical waveguides. Appl. Phys. Lett. 63, 1601–1603 (1993).

    Article  ADS  Google Scholar 

  65. Spalter, S. et al. Strong self-phase modulation in planar chalcogenide waveguides. Opt. Lett. 27, 363–365 (2002).

    Article  ADS  Google Scholar 

  66. Hu, J. J. et al. Si-CMOS-compatible lift-off fabrication of low-loss planar chalcogenide waveguides. Opt. Express 15, 11798–11807 (2007).

    Article  ADS  Google Scholar 

  67. Choi, D.Y. et al. Submicrometer thick low loss As2S3 planar waveguides for nonlinear optical devices. IEEE Photon. Tech. Lett. 22, 495–497 (2010).

    Article  ADS  Google Scholar 

  68. Gai, X. et al. Dispersion engineered Ge11.5As24Se64.5 nanowires with a nonlinear parameter of 136000W−1 km−1 at 1550nm. Opt. Express 18, 18866–18874 (2010).

    Article  ADS  Google Scholar 

  69. Rogalski, A. & Piotrowski, J. Intrinsic infrared detectors. Prog. Quant. Electron. 12, 87–289 (1988).

    Article  ADS  Google Scholar 

  70. Zogg, H. et al. Infrared sensor arrays with 3–12 μm cutoff wavelengths in heteroepitaxial narrow-gap semiconductors on silicon substrates. IEEE Trans. Electron. Dev. 38, 1110–1116 (1991).

    Article  ADS  Google Scholar 

  71. Wu, H. Z. et al. Molecular beam epitaxy growth of PbSe on BaF2-coated Si(111) and observation of the PbSe growth interface. J. Vac. Sci. Tech. 17, 1263–1266 (1999).

    Article  Google Scholar 

  72. Xiao, F. et al. Electrodeposition of PbTe thin films from acidic nitrate baths. Electrochim. Acta 52, 1101–1107 (2006).

    Article  Google Scholar 

  73. Butenko, A. V. et al. Characterization of high-temperature PbTe p–n junctions prepared by thermal diffusion and ion implantation. J. Appl. Phys. 103, 024506 (2008).

    Article  ADS  Google Scholar 

  74. Lucas, P., Riley, M. R., Boussard-Pledel, C. & Bureau, B. Advances in chalcogenide fiber evanescent wave biochemical sensing. Anal. Biochem. 351, 1–10 (2006).

    Article  Google Scholar 

  75. Heo, J., Rodrigues, M., Saggese, S. J. & Sigel, G. H. Remote fiber-optic chemical sensing using evanescent-wave interactions in chalcogenide glass fibers. Appl. Opt. 30, 3944–3951 (1991).

    Article  ADS  Google Scholar 

  76. Anne, M. L. et al. Chalcogenide glass optical waveguides for infrared biosensing. Sensors 9, 7398–7411 (2009).

    Article  Google Scholar 

  77. Mizaikoff, B. et al. Infrared fiber-optical chemical sensors with reactive surface coatings. Sens. Actuat. B 29, 58–63 (1995).

    Article  Google Scholar 

  78. Le Coq, D. et al. Chalcogenide double index fibers: Fabrication, design, and application as a chemical sensor. Mat. Res. Bull. 38, 1745–1754 (2003).

    Article  Google Scholar 

  79. Hocde, S. et al. Recent developments in chemical sensing using infrared glass fibers. J. Non-Cryst. Sol. 274, 17–22 (2000).

    Article  ADS  Google Scholar 

  80. Ganjoo, A. et al. Planar chalcogenide waveguides for IR evanescent wave sensor. J. Non-Cryst. Sol. 352, 584–588 (2006).

    Article  ADS  Google Scholar 

  81. Pope, A. et al. Chalcogenide waveguide structures as substrates and guiding layers for evanescent wave Raman spectroscopy of Bacteriorhodospin. Vib. Spectrosc. 42, 249–253 (2006).

    Article  Google Scholar 

  82. Hu, J. et al. Demonstration of chalcogenide glass racetrack microresonators. Opt. Lett. 33, 761–763 (2008).

    Article  ADS  Google Scholar 

  83. Hu, J. et al. Planar waveguide-coupled, high-index-contrast, high-Q resonators in chalcogenide glass for sensing. Opt. Lett. 33, 2500–2502 (2008).

    Article  ADS  Google Scholar 

  84. Richardson, K., Krol, D. & Hirao, K. Glasses for photonic applications. Int. J. Appl. Glass Science 1, 74–86 (2010).

    Article  Google Scholar 

  85. Ganjoo, A. et al. Detection and fingerprinting of pathogens: Mid-IR biosensor using amorphous chalcogenide films. J. Non-Cryst. Sol. 354, 2757–2762 (2008).

    Article  ADS  Google Scholar 

  86. Vlasov, Y., Legin, A. & Rudnitskaya, A. Cross-sensitivity evaluation of chemical sensors for electronic tongue: determination of heavy metal Ions. Sens. Actua. B 44, 532–537 (1997).

    Article  Google Scholar 

  87. Pelusi, M. et al. Photonic-chip-based radio-frequency spectrum analyser with terahertz bandwidth. Nature Photon. 3, 139–143 (2009).

    Article  ADS  Google Scholar 

  88. Asobe, M., Kanamori, T. & Kubodera, K. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber. IEEE Photon. Tech. Lett. 4, 362–365 (1992).

    Article  ADS  Google Scholar 

  89. Lenz, G. et al. Large Kerr effect in bulk Se-based chalcogenide glasses. Opt. Lett. 25, 254–256 (2000).

    Article  ADS  Google Scholar 

  90. Thielen, P. A. et al. Small-core As–Se fiber for Raman amplification. Opt. Lett. 28, 1406–1408 (2003).

    Article  ADS  Google Scholar 

  91. Slusher, R. E., Lenz, G. & Hodelin, J. Laser Raman gain and nonlinear phase shifts in high-purity As2Se3 chalcogenide fibers. J. Opt. Soc. Am. B 21, 1146–1155 (2004).

    Article  ADS  Google Scholar 

  92. Lamont, M. R. E. et al. Supercontinuum generation in dispersion engineered highly nonlinear (γ=10/W/m) As2S3 chalcogenide planar waveguides. Opt. Express 16, 14938–14944 (2008).

    Article  ADS  Google Scholar 

  93. El-Amraoui, M. et al. Strong infrared spectral broadening in low-loss As–S chalcogenide suspended core microstructured optical fibers. Opt. Express 18, 4547–4556 (2010).

    Article  ADS  Google Scholar 

  94. Hu, J. et al. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. Opt. Express 18, 6722–6739 (2010).

    Article  ADS  Google Scholar 

  95. Ta'eed, V. G. et al. Self-phase modulation-based integrated optical regeneration in chalcogenide waveguides. IEEE J. Sel. Top. Quant. 12, 360–370 (2006).

    Article  Google Scholar 

  96. Vo, T. D. et al. Photonic chip based transmitter optimization and receiver demultiplexing of a 1.28 Tbit/s OTDM Signal. Opt. Express 18, 17252–17261 (2010).

    Article  ADS  Google Scholar 

  97. Lamont, M. R. E. et al. Net-gain from a parametric amplifier on a chalcogenide optical chip. Opt. Express 16, 20374–20381 (2008).

    Article  ADS  Google Scholar 

  98. Van Erps, J. et al. High-resolution optical sampling of 640-Gb/s data using four-wave mixing in dispersion-engineered highly nonlinear As2S3 planar waveguides. J. Light. Tech. 28, 209–215 (2010).

    Article  Google Scholar 

  99. Yeom, D.-I. et al. Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires. Opt. Lett. 33, 660–662 (2008).

    Article  ADS  Google Scholar 

  100. Lee, H. et al. Bismuth-oxide-based nonlinear fiber with a high SBS threshold and its application to four-wave-mixing wavelength conversion using a pure continuous-wave pump. J. Light. Tech. 24, 22–28 (2006).

    Article  Google Scholar 

  101. Asobe, M. et al. Third-order nonlinear spectroscopy in As2S3 chalcogenide glass fibers. J. Appl. Phys. 77, 5518–5523 (1995).

    Article  ADS  Google Scholar 

  102. Fu, L. B. et al. Investigation of self-phase modulation based optical regeneration in single mode As2Se3 chalcogenide glass fiber. Opt. Express 13, 7637–1644 (2005).

    Article  ADS  Google Scholar 

  103. Madden, S. J. et al. Long, low loss etched As2S3 chalcogenide waveguides for all-optical signal regeneration. Opt. Express 15, 14414–14421 (2007).

    Article  ADS  Google Scholar 

  104. Suzuki, K., Hamachi, Y. & Baba, T. Fabrication and characterization of chalcogenide glass photonic crystal waveguides. Opt. Express 17, 22393–22400 (2009).

    Article  ADS  Google Scholar 

  105. Foster, M. A., Turner, A. C., Lipson, M. & Gaeta, A. L. Nonlinear optics in photonic nanowires. Opt. Express 16, 1300–1320 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank J.D. Musgraves and T.D. Vo for their help in preparing this manuscript. The support of the Australian Research Council through its Federation Fellowship and Centre of Excellence scheme is also gratefully acknowledged. Funding support related to this effort has been provided to Clemson University by the US Department of Energy under award number DE-SC52-06NA27341 and the National Science Foundation (DMR-0807016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin J. Eggleton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eggleton, B., Luther-Davies, B. & Richardson, K. Chalcogenide photonics. Nature Photon 5, 141–148 (2011). https://doi.org/10.1038/nphoton.2011.309

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.309

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing