Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency

Abstract

Single emitters have been considered as sources of single photons in various contexts, including cryptography, quantum computation, spectroscopy and metrology1,2,3. The success of these applications will crucially rely on the efficient directional emission of photons into well-defined modes. To accomplish high efficiency, researchers have investigated microcavities at cryogenic temperatures4,5, photonic nanowires6,7 and near-field coupling to metallic nano-antennas8,9,10. However, despite impressive progress, the existing realizations substantially fall short of unity collection efficiency. Here, we report on a theoretical and experimental study of a dielectric planar antenna, which uses a layered structure to tailor the angular emission of a single oriented molecule. We demonstrate a collection efficiency of 96% using a microscope objective at room temperature and obtain record detection rates of 50 MHz. Our scheme is wavelength-insensitive and can be readily extended to other solid-state emitters such as colour centres11,12 and semiconductor quantum dots13,14.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Emission properties of a vertically oriented dipole close to a dielectric planar antenna.
Figure 2: Photophysics of the single-photon source.
Figure 3: Angular distribution of the emission.

Similar content being viewed by others

References

  1. Lounis, B. & Orrit, M. Single-photon sources. Rep. Prog. Phys. 68, 1129–1179 (2005).

    Article  ADS  Google Scholar 

  2. Scheel, S. Single-photon sources—an introduction. J. Mod. Opt. 56, 141–160 (2009).

    Article  ADS  Google Scholar 

  3. Polyakov, S. V. & Migdall, A. L. Quantum radiometry. J. Mod. Opt. 56, 1045–1052 (2009).

    Article  ADS  Google Scholar 

  4. Pelton, M. et al. Efficient source of single photons: a single quantum dot in a micropost microcavity. Phys. Rev. Lett. 89, 233602 (2002).

    Article  ADS  Google Scholar 

  5. Strauf, S. et al. High-frequency single-photon source with polarization control. Nature Photon. 1, 704–708 (2007).

    Article  ADS  Google Scholar 

  6. Claudon, J. et al. A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nature Photon. 4, 174–177 (2010).

    Article  ADS  Google Scholar 

  7. Babinec, T. M. et al. A diamond nanowire single-photon source. Nature Nanotech. 5, 195–199 (2010).

    Article  ADS  Google Scholar 

  8. Chang, D. E., Sorensen, A. S., Hemmer, P. R. & Lukin, M. D. Strong coupling of single emitters to surface plasmons. Phys. Rev. B. 76, 035420 (2007).

    Article  ADS  Google Scholar 

  9. Chen, X. W., Sandoghdar, V. & Agio, M. Highly efficient interfacing of guided plasmons and photons in nanowires. Nano Lett. 9, 3756–3761 (2009).

    Article  ADS  Google Scholar 

  10. Curto, A. G. et al. Unidirectional emission of a quantum dot coupled to a nanoantenna. Science 329, 930–933 (2010).

    Article  ADS  Google Scholar 

  11. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

    Article  ADS  Google Scholar 

  12. Simpson, D. A. et al. A highly efficient two level diamond based single photon source. Appl. Phys. Lett. 94, 203107 (2009).

    Article  ADS  Google Scholar 

  13. Michler, P. et al. Quantum correlation among photons from a single quantum dot at room temperature. Nature 406, 968–970 (2000).

    Article  ADS  Google Scholar 

  14. Ward, M. B. et al. On-demand single-photon source for 1.3 µm telecom fiber. Appl. Phys. Lett. 86, 201111 (2005).

    Article  ADS  Google Scholar 

  15. Koyama, K., Yoshita, M., Baba, M., Suemoto, T. & Akiyama, H. High collection efficiency in fluorescence microscopy with a solid immersion lens. Appl. Phys. Lett. 75, 1667–1669 (1999).

    Article  ADS  Google Scholar 

  16. Lukosz, W. & Kunz, R. E. Light emission by magnetic and electric dipoles close to a plane dielectric interface. II. Radiation patterns of perpendicular oriented dipoles. J. Opt. Soc. Am. 67, 1615–1619 (1977).

    Article  ADS  Google Scholar 

  17. Brokmann, X., Giacobino, E., Dahan, M. & Hermier, J. P. Highly efficient triggered emission of single photons by colloidal CdSe/ZnS nanocrystals. Appl. Phys. Lett. 85, 712–714 (2004).

    Article  ADS  Google Scholar 

  18. Balanis, C. A. Antenna Theory (Wiley-Interscience, 2005).

    Google Scholar 

  19. Luan, L. et al. Angular radiation pattern of electric dipoles embedded in a thin film in the vicinity of a dielectric half space. Appl. Phys. Lett. 89, 031119 (2006).

    Article  ADS  Google Scholar 

  20. Neyts, K. A. Simulation of light emission from thin-film microcavities. J. Opt. Soc. Am. A 15, 962–971 (1998).

    Article  ADS  Google Scholar 

  21. Chen, X., Choy, W. C. H. & He, S. Efficient and rigorous modeling of light emission in planar multilayer organic light-emitting diodes. J. Disp. Technol. 3, 110–117 (2007).

    Article  ADS  Google Scholar 

  22. Pfab, R. J. et al. Aligned terrylene molecules in a spin-coated ultrathin crystalline film of p-terphenyl. Chem. Phys. Lett. 387, 490–495 (2004).

    Article  ADS  Google Scholar 

  23. Fleury, L., Segura, J. M., Zumofen, G., Hecht, B. & Wild, U. P. Nonclassical photon statistics in single-molecule fluorescence at room temperature. Phys. Rev. Lett. 84, 1148–1151 (2000).

    Article  ADS  Google Scholar 

  24. Buchler, B. C., Kalkbrenner, T., Hettich, C. & Sandoghdar, V. Measuring the quantum efficiency of the optical emission of single radiating dipoles using a scanning mirror. Phys. Rev. Lett. 95, 063003 (2005).

    Article  ADS  Google Scholar 

  25. Dorn, R., Quabis, S. & Leuchs, G. Sharper focus for a radially polarized light beam. Phys. Rev. Lett. 91, 233901 (2003).

    Article  ADS  Google Scholar 

  26. Ramachandran, S., Kristensen, P. & Yan, M. F. Generation and propagation of radially polarized beams in optical fibers. Opt. Lett. 34, 2525–2527 (2009).

    Article  ADS  Google Scholar 

  27. Lettow, R. et al. Quantum interference of tunably indistinguishable photons from remote organic molecules. Phys. Rev. Lett. 104, 123605 (2010).

    Article  ADS  Google Scholar 

  28. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  29. Zumofen, G., Mojarad, N. M., Sandoghdar, V. & Agio, M. Perfect reflection of light by an oscillating dipole. Phys. Rev. Lett. 101, 180404 (2008).

    Article  ADS  Google Scholar 

  30. Celebrano, M. et al. Efficient coupling of single photons to single plasmons. Opt. Express 18, 13829–13835 (2010).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Swiss National Foundation (SNF) and ETH Zurich (QSIT). Thanks also go to M. Agio and G. Zumofen for helpful discussions and E. Ikonen for fruitful exchange regarding the potential of single-photon sources for metrology.

Author information

Authors and Affiliations

Authors

Contributions

K.G.L. and H.E. performed the experiments reported here. P.K., R.L. and K.G.L. suggested and performed the first experiments. X.W.C. suggested the use of layered structures and performed the calculations. A.R., S.G. and V.S. supervised the project. S.G. and V.S. wrote the paper.

Corresponding author

Correspondence to S. Götzinger.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, K., Chen, X., Eghlidi, H. et al. A planar dielectric antenna for directional single-photon emission and near-unity collection efficiency. Nature Photon 5, 166–169 (2011). https://doi.org/10.1038/nphoton.2010.312

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.312

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing