Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Spectral line-by-line pulse shaping of on-chip microresonator frequency combs

Abstract

Recently, on-chip comb generation methods based on nonlinear optical modulation in ultrahigh-quality-factor monolithic microresonators have been demonstrated, where two pump photons are transformed into sideband photons in a four-wave-mixing process mediated by Kerr nonlinearity. Here, we investigate line-by-line pulse shaping of such combs generated in silicon nitride ring resonators. We observe two distinct paths to comb formation that exhibit strikingly different time-domain behaviours. For combs formed as a cascade of sidebands spaced by a single free spectral range that spread from the pump, we are able to compress stably to nearly bandwidth-limited pulses. This indicates high coherence across the spectra and provides new data on the high passive stability of the spectral phase. For combs where the initial sidebands are spaced by multiple free spectral ranges that then fill in to give combs with single free-spectral-range spacing, the time-domain data reveal partially coherent behaviour.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High-Q silicon nitride microring.
Figure 2: Experimental set-up.
Figure 3: Generated Kerr frequency combs from silicon nitride rings.
Figure 4: Optical arbitrary waveform generation from a Kerr comb.
Figure 5: Compressed pulses of type-I Kerr combs.
Figure 6: Compressed pulses of type-II Kerr combs.

Similar content being viewed by others

References

  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  2. Diddams, S. A., Bergquist, J. C., Jefferts, S. R. & Oates, C. W. Standards of time and frequency at the outset of the 21st century. Science 306, 1318–1324 (2004).

    Article  ADS  Google Scholar 

  3. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  4. Schliesser, A., Brehm, M., Keilmann, F. & Weide van der, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    Article  ADS  Google Scholar 

  5. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  6. Thorpe, M. J., Moll, K. D., Jones, J. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article  ADS  Google Scholar 

  7. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  8. Jones, D. J. et al. Carrier-envelope phase control of femtosecond mode-locked lasers and direct optical frequency synthesis. Science 288, 635–639 (2000).

    Article  ADS  Google Scholar 

  9. Murata, H., Morimoto, A., Kobayashi, T. & Yamamoto, S. Optical pulse generation by electrooptic-modulation method and its application to integrated ultrashort pulse generators. IEEE J. Sel. Top. Quantum Electron. 6, 1325–1331 (2000).

    Article  ADS  Google Scholar 

  10. Yamamoto, T., Komukai, T., Suzuki, K. & Takada, A. Spectrally flattened phase-locked multi-carrier light generator with phase modulators and chirped fibre Bragg grating. Electron. Lett. 43, 1040–1042 (2007).

    Article  Google Scholar 

  11. Wu, R., Supradeepa, V. R., Long, C. M., Leaird, D. E. & Weiner, A. M. Generation of very flat optical frequency combs from continuous-wave lasers using cascaded intensity and phase modulators driven by tailored radio frequency waveforms. Opt. Lett. 35, 3234–3226 (2010).

    Article  ADS  Google Scholar 

  12. Kourogi, M., Nakagawa, K. & Ohtsu, M. Wide-span optical frequency comb generator for accurate optical frequency difference measurement. IEEE J. Quantum Electron. 29, 2693–2701 (1993).

    Article  ADS  Google Scholar 

  13. Kippenberg, T. J., Holzwarth, R. & Diddams, S. A. Microresonator-based optical frequency combs. Science 332, 555–559 (2011).

    Article  ADS  Google Scholar 

  14. DelHaye, P. et al. Optical frequency comb generation from a monolithic microresonator. Nature 450, 1214–1217 (2007).

    Article  ADS  Google Scholar 

  15. Levy, J. S. et al. CMOS-compatible multiple-wavelength oscillator for on-chip optical interconnects. Nature Photon. 4, 37–40 (2010).

    Article  ADS  Google Scholar 

  16. Razzari, L. et al. CMOS compatible integrated optical hyper-parametric oscillator. Nature Photon. 4, 41–45 (2010).

    Article  ADS  Google Scholar 

  17. Grudinin, I. S., Yu, N. & Maleki, L. Generation of optical frequency combs with a CaF2 resonator. Opt. Lett. 34, 878–880 (2009).

    Article  ADS  Google Scholar 

  18. DelHaye, P., Arcizet, O., Schliesser, A., Holzwarth, R. & Kippenberg, T. J. Full stabilization of a microresonator-based optical frequency comb. Phys. Rev. Lett. 101, 053903 (2008).

    Article  ADS  Google Scholar 

  19. Del'Haye, P. et al. Octave spanning tunable frequency comb from a microresonator. Phys. Rev. Lett. 107, 063901 (2011).

    Article  ADS  Google Scholar 

  20. Foster, M. A. et al. Silicon-based monolithic optical frequency comb source. Opt. Express 19, 14233–14239 (2011).

    Article  ADS  Google Scholar 

  21. Okawachi, Y. et al. Octave-spanning frequency comb generation in a silicon nitride chip. Opt. Lett. 36, 3398–3400 (2011).

    Article  ADS  Google Scholar 

  22. Ferrera, M. et al. Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt. Express 17, 14098–14103 (2009).

    Article  ADS  Google Scholar 

  23. Arcizet, O., Schliesser, A., Del'Haye, P., Holzwarth, R. & Kippenberg, T. J. Optical frequency comb generation in monolithic microresonators, in Practical Applications of Microresonators in Optics and Photonics (Taylor & Francis, 2009).

    Google Scholar 

  24. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  25. Jiang, Z., Seo, D. S., Leaird, D. E. & Weiner, A. M. Spectral line by line pulse shaping. Opt. Lett. 30, 1557–1559 (2005).

    Article  ADS  Google Scholar 

  26. Miyamoto, D. et al. Waveform-controllable optical pulse generation using an optical pulse synthesizer. IEEE Photon. Technol. Lett. 18, 721–723 (2006).

    Article  ADS  Google Scholar 

  27. Jiang, Z., Huang, C.-B., Leaird, D. E. & Weiner, A. M. Optical arbitrary waveform processing of more than 100 spectral comb lines. Nature Photon. 1, 463–467 (2007).

    Article  ADS  Google Scholar 

  28. Fontaine, N. K. et al. 32 phase × 32 amplitude optical arbitrary waveform generation. Opt. Lett. 32, 865–867 (2007).

    Article  ADS  Google Scholar 

  29. Cundiff, S. T. & Weiner, A. M. Optical arbitrary waveform generation. Nature Photon. 4, 760–766 (2010).

    Article  ADS  Google Scholar 

  30. Huang, C. B., Park, S. G., Leaird, D. E. & Weiner, A. M. Nonlinearly broadened phase-modulated continuous-wave laser frequency combs characterized using DPSK decoding. Opt. Express 16, 2520–2527 (2008).

    Article  ADS  Google Scholar 

  31. Miao, H., Leaird, D. E., Langrock, C., Fejer, M. M. & Weiner, A. M. Optical arbitrary waveform characterization via dual-quadrature spectral shearing interferometry. Opt. Express 17, 3381–3389 (2009).

    Article  ADS  Google Scholar 

  32. Chembo, Y. K., Strekalov, D. V. & Yu, N. Spectrum and dynamics of optical frequency combs generated with monolithic whispering gallery mode resonators. Phys. Rev. Lett. 104, 103902 (2010).

    Article  ADS  Google Scholar 

  33. Agha, I. H., Okawachi, Y. & Gaeta, A. L. Theoretical and experimental investigation of broadband cascaded four-wave mixing in high-Q microspheres. Opt. Express 17, 16209–16215 (2009).

    Article  ADS  Google Scholar 

  34. Papp, S. B. & Diddams, S. A. Spectral and temporal characterization of a fused-quartz microresonator optical frequency comb. Preprint at http://arxiv.org/abs/1106.2487v1 (2011).

  35. Heritage, J. P., Weiner, A. M. & Thurston, R. N. Picosecond pulse shaping by spectral phase and amplitude manipulation. Opt. Lett. 10, 609–611 (1985).

    Article  ADS  Google Scholar 

  36. Ippen, E. P. & Shank, C. V. Ultrashort Light Pulses (Springer-Verlag, 1977).

    Google Scholar 

  37. Weiner, A. M. Ultrafast Optics (John Wiley & Sons, 2009).

    Book  Google Scholar 

  38. Carmon, T., Yang, L. & Vahala, K. J. Dynamic thermal behavior and thermal self-stability of microcavities. Opt. Express 12, 4742–4750 (2004).

    Article  ADS  Google Scholar 

  39. Shoji, T., Tsuchizawa, T., Watanabe, T., Yamada, K. & Morita, H. Low loss mode size converter from 0.3 µm square Si wire waveguides to single mode fibres. Electron. Lett. 38, 1669–1670 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the comments and suggestions from V. Aksyuk, M. Qi, C. Long and Victor Torres Company, and thank the staff of the CNST Nanofab, particularly R. Kasica, for assistance with electron-beam lithography. This project was supported in part by the National Science Foundation (grants ECCS-0925759 and ECCS-1102110), by the Naval Postgraduate School (grant N00244-09-1-0068) under the National Security Science and Engineering Faculty Fellowship programme, and by the NIST-CNST/UMD-NanoCenter Cooperative Agreement. Any opinions, findings and conclusions or recommendations expressed in this publication are those of the authors and do not necessarily reflect the views of the sponsors.

Author information

Authors and Affiliations

Authors

Contributions

F.F. led the pulse-shaping and compression experiments, with assistance from D.E.L., H.M. and J.W. H.M. led device fabrication with the assistance of L.C. Microring design and/or characterization was carried out by F.F., K.S. and L.T.V. The project was organized and coordinated by A.M.W. and H.M. A.M.W., H.M., F.F., D.E.L. and K.S. contributed to the writing.

Corresponding authors

Correspondence to Houxun Miao or Andrew M. Weiner.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferdous, F., Miao, H., Leaird, D. et al. Spectral line-by-line pulse shaping of on-chip microresonator frequency combs. Nature Photon 5, 770–776 (2011). https://doi.org/10.1038/nphoton.2011.255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2011.255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing