Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An array of integrated atom–photon junctions

Abstract

Photonic chips that integrate optical elements on a single device can process vast amounts of information rapidly. A new branch of this technology involves coupling light to cold atoms or Bose–Einstein condensates, the quantum nature of which provides a basis for new information-processing methods. The use of optical waveguides gives the light a small cross-section, making coupling to atoms1,2 efficient. In this Letter, we present the first waveguide chip designed to address a Bose–Einstein condensate along a row of independent junctions, which are separated by only 10 µm and have large atom–photon coupling. We describe a fully integrated, scalable design, and demonstrate 11 junctions working as intended, using a low-density cold atom cloud with as little as one atom on average in any one junction. The device suggests new possibilities for engineering quantum states of matter and light on a microscopic scale.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of the integrated-waveguide atom chip.
Figure 2: Absorption of light by atoms in the trench.
Figure 3: Zeeman-split absorption spectrum measures light polarization.
Figure 4: Comparison of performance for 11 junctions.

Similar content being viewed by others

References

  1. Horak, P. et al. Possibility of single-atom detection on a chip. Phys. Rev. A 67, 043806 (2003).

    Article  ADS  Google Scholar 

  2. Bajcsy M. et al. Efficient all-optical switching using slow light within a hollow fiber. Phys. Rev. Lett. 102, 203902 (2009).

    Article  ADS  Google Scholar 

  3. Fortágh, J. & Zimmermann, C. Magnetic microtraps for ultracold atoms. Rev. Mod. Phys. 79, 235–289 (2007).

    Article  ADS  Google Scholar 

  4. Reichel, J. & Vuletic, V. Atom Chips (Wiley-VCH, in the press).

  5. Seidelin, S. et al. Microfabricated surface-electrode ion trap for scalable quantum information processing. Phys. Rev. Lett. 96, 253003 (2006).

    Article  ADS  Google Scholar 

  6. André, A. et al. A coherent all-electrical interface between polar molecules and mesoscopic superconducting resonators. Nature Phys. 2, 636–642 (2006).

    Article  ADS  Google Scholar 

  7. Jaksch, D., Briegel, H.-J., Cirac, J. I., Gardiner, C. W. & Zoller, P. Entanglement of atoms via cold controlled collisions. Phys. Rev. Lett. 82, 1975–1978 (1999).

    Article  ADS  Google Scholar 

  8. Chen, S. et al. Deterministic and storable single-photon source based on a quantum memory. Phys. Rev. Lett. 97, 173004 (2006).

    Article  ADS  Google Scholar 

  9. Gleyzes, S. et al. Towards a monolithic optical cavity for atom detection and manipulation Eur. Phys. J. D 53, 107–111 (2009).

    Article  ADS  Google Scholar 

  10. Cirac, J. I. & Zoller, P. Quantum computations with cold trapped ions. Phys. Rev. Lett. 74, 4091–4094 (1995).

    Article  ADS  Google Scholar 

  11. DeMille, D. Quantum computation with trapped polar molecules. Phys. Rev. Lett. 88, 067901 (2002).

    Article  ADS  Google Scholar 

  12. Politi, A., Cryan, M. J., Rarity, J. G., Yu, S. & O'Brien, J. L. Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008).

    Article  ADS  Google Scholar 

  13. Yang, W. et al. Atomic spectroscopy on a chip. Nature Photon. 1, 331–335 (2007).

    Article  ADS  Google Scholar 

  14. Knappe, S. et al. A microfabricated atomic clock. Appl. Phys. Lett. 85, 1460–1462 (2004).

    Article  ADS  Google Scholar 

  15. Pollock, S., Cotter, J. P., Laliotis, A. & Hinds, E. A. Integrated magneto-optical traps on a chip using silicon pyramid structures. Opt. Express 17, 14109–14114 (2009).

    Article  ADS  Google Scholar 

  16. Quinto-Su, P., Tscherneck, M., Holmes, M. & Bigelow, N. On-chip optical detection of laser cooled atoms. Opt. Express 12, 5098–5103 (2004).

    Article  ADS  Google Scholar 

  17. Eriksson, S. et al. Integrated optical components on atom chips. Eur. Phys. J. D 35, 135–139 (2005).

    Article  ADS  Google Scholar 

  18. Takamizawa, A., Steinmetz, T., Delhuille, R., Hänsch, T. W. & Reichel, J. Miniature fluorescence detector for single atom observation on a microchip. Opt. Express 14, 10976–10983 (2006).

    Article  ADS  Google Scholar 

  19. Wilzbach, M. et al. Simple integrated single-atom detector. Opt. Lett. 34, 259–261 (2009).

    Article  ADS  Google Scholar 

  20. Colombe, Y. et al. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip. Nature 450, 272–276 (2007).

    Article  ADS  Google Scholar 

  21. Trupke, M. et al. Atom detection and photon production in a scalable, open, optical micro-cavity. Phys. Rev. Lett. 99, 063601 (2007).

    Article  ADS  Google Scholar 

  22. Dayan, B. et al. A photon turnstile dynamically regulated by one atom. Science 319, 1062–1065 (2008).

    Article  ADS  Google Scholar 

  23. Aoki, T. et al. Efficient routing of single photons by one atom and a microtoroidal cavity. Phys. Rev. Lett. 102, 083601 (2009).

    Article  ADS  Google Scholar 

  24. Hope, J. J. & Close, J. D. General limit to nondestructive optical detection of atoms. Phys. Rev. A 71, 043822 (2005).

    Article  ADS  Google Scholar 

  25. Abraham, E. R. I. & Cornell, E. A. Teflon feedthrough for coupling optical fibers into ultrahigh vacuum systems. Appl. Opt. 37, 1762–1763 (1998).

    Article  ADS  Google Scholar 

  26. Yu, D. F. & Fessler, J. A. Mean and variance of single photon counting with deadtime. Phys. Med. Biol. 45, 2043–2056 (2000).

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge valuable discussions with B. Darquié, the assistance of G. Lepert with fibre coupling, and the technical expertise of J. Dyne, S. Maine and V. Gerulis, without whom the apparatus could not have been constructed. We acknowledge UK support by the Engineering and Physical Sciences Research Council (EPSRC), the Quantum Information Processing Interdisciplinary Research Collaboration (QIPIRC) and the Royal Society, and European Union support through Scalable Quantum Computing with Light and Atoms (SCALA) and Hybrid Information Processing (HIP).

Author information

Authors and Affiliations

Authors

Contributions

R.A.N., M.S., M.K. and P.G.P. constructed the apparatus, maintained the experiment, and took and analysed the data. M.T. and M.K. designed, specified and assembled the waveguide chip. E.A.H. was the principal investigator and also co-wrote the manuscript with R.A.N. All authors commented on the manuscript and discussed the construction, data, its analysis and interpretation.

Corresponding authors

Correspondence to R. A. Nyman or E. A. Hinds.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kohnen, M., Succo, M., Petrov, P. et al. An array of integrated atom–photon junctions. Nature Photon 5, 35–38 (2011). https://doi.org/10.1038/nphoton.2010.255

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.255

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing