Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging

A Corrigendum to this article was published on 01 February 2011

This article has been updated

Abstract

Coherent coupling between distant two-level systems is a fundamental process in several physical contexts, from natural photosynthesis to quantum-information processing, where it enables two-qubit operations. For quantum information, qubits based on electronic degrees of freedom in a solid-state matrix are sensible candidates for scalable, integrated implementations. Clarifying the mechanisms underlying coherent coupling in solids is therefore an essential step in the development of such technology. Here, we demonstrate the existence of a long-range coherent coupling mechanism between individual localized excitons in a 5 nm GaAs/AlGaAs quantum well, introducing the novel tool of two-dimensional nonlinear coherent hyperspectral imaging. The coupling is shown to arise due to a biexcitonic renormalization, rather than a transition dipole (Förster) interaction. The long-range nature of the coupling is attributed to the existence of spatially extended exciton states up to the micrometre range, which are admixed in the biexciton state, as revealed in nonlinear imaging.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Hyperspectral spatial imaging of FWM from individual excitons localized in monolayer islands of a 5 nm GaAs/AlGaAs quantum well.
Figure 2: Coherent coupling features observed in two-dimensional FWM at the region with low exciton density.
Figure 3: Coherent coupling features observed in two-dimensional FWM in the region with high exciton density.
Figure 4: Simulations of coupling features observable in two-dimensional FWM.
Figure 5: Coupling strength as a function of inter-exciton distance.

Similar content being viewed by others

Change history

  • 07 January 2011

    In the version of this Article originally published, the left-hand dash-dot line shown in Fig. 2b was incorrectly labelled as "X states", when it should have read "XX states". This error has been corrected in the HTML and PDF versions.

References

  1. Lloyd, S. Quantum information matters. Science 319, 1209–1211 (2008).

    Article  ADS  Google Scholar 

  2. Borri, P. & Langbein, W. in Semiconductor Quantum Bits (eds, Henneberger, F. & Benson, O.) Ch. 12 (Pan Stanford Publishing, 2009).

    Google Scholar 

  3. Berezovsky, J., Mikkelsen, M. H., Stoltz, N. G., Coldren, L. A. & Awschalom, D. D. Picosecond coherent optical manipulation of a single electron spin in a quantum dot. Science 320, 349–352 (2008).

    Article  ADS  Google Scholar 

  4. Hanson, R., Dobrovitski, V. V., Feiguin, A. E., Gywat, O. & Awschalom, D. D. Coherent dynamics of a single spin interacting with an adjustable spin bath. Science 320, 352–355 (2008).

    ADS  Google Scholar 

  5. Press, D., Ladd, T. D., Zhang, B. & Yamamoto, Y. Complete quantum control of a single quantum dot spin using ultrafast optical pulses. Nature 456, 218–221 (2008).

    Article  ADS  Google Scholar 

  6. Petta, J. R. et al. Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180–2184 (2005).

    Article  ADS  Google Scholar 

  7. Koppens, F. H. L. et al. Driven coherent oscillations of a single electron spin in a quantum dot. Nature 442, 766–771 (2006).

    Article  ADS  Google Scholar 

  8. Foletti, S., Bluhm, H., Mahalu, D., Umansky, V. & Yacoby, A. Nature Phys. 5, 903–908 (2009).

    Article  ADS  Google Scholar 

  9. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    Article  ADS  Google Scholar 

  10. Wu, T., Li, X., Duan, L. M., Steel, D. G. & Gammon, D. Density matrix tomography through sequential coherent optical rotations of an exciton qubit in a single quantum dot. Phys. Rev. Lett. 96, 087402 (2006).

    Article  ADS  Google Scholar 

  11. Nielsen, M. A. & Chuang, I. L. Quantum Information and Quantum Computation (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  12. Langbein, W. & Patton, B. Heterodyne spectral interferometry for multidimensional nonlinear spectroscopy of individual quantum systems. Opt. Lett. 31, 1151–1153 (2006).

    Article  ADS  Google Scholar 

  13. Langbein, W. & Patton, B. Transient coherent nonlinear spectroscopy of single quantum dots. J. Phys. Condens. Matter 19, 295203 (2007).

    Article  Google Scholar 

  14. Hall, K. L., Lenz, G., Ippen, E. P. & Raybon, G. Heterodyne pump–probe technique for time-domain studies of optical nonlinearities in waveguides. Opt. Lett. 17, 874–876 (1992).

    Article  ADS  Google Scholar 

  15. Borri, P. et al. Measurement and calculation of the critical pulsewidth for gain saturation in semiconductor optical amplifiers. Opt. Commun. 164, 51–55 (1999).

    Article  ADS  Google Scholar 

  16. Lepetit, L., Chériaux, G. & Joffre, M. Linear techniques of phase measurement by femtosecond spectral interferometry for applications in spectroscopy. J. Opt. Soc. Am. B 12, 2467–2474 (1995).

    Article  ADS  Google Scholar 

  17. Langbein, W. & Patton, B. Microscopic measurement of photon echo formation in groups of individual excitonic transitions. Phys. Rev. Lett. 95, 017403 (2005).

    Article  ADS  Google Scholar 

  18. Kasprzak, J. et al. Up on the Jaynes–Cummings ladder of a quantum-dot/microcavity system. Nature Mater. 9, 304–308 (2010).

    Article  ADS  Google Scholar 

  19. Brixner, T. et al. Two-dimensional spectroscopy of electronic couplings in photosynthesis. Nature 434, 625–628 (2005).

    Article  ADS  Google Scholar 

  20. Zhang, T. et al. Polarization-dependent optical 2D Fourier transform spectroscopy of semiconductors. Proc. Natl. Acad. Sci. USA 104, 14227–14232 (2007).

    Article  ADS  Google Scholar 

  21. Stone, K. W. et al. Two-quantum 2D FT electronic spectroscopy of biexcitons in GaAs quantum wells. Science 324, 1169–1173 (2009).

    Article  ADS  Google Scholar 

  22. Bax, A. & Lerner, L. Two-dimensional nuclear magnetic resonance spectroscopy. Science 232, 960 967 (1986).

    Article  ADS  Google Scholar 

  23. Wu, Q., Grober, R. D., Gammon, D. & Katzer, D. S. Imaging spectroscopy of two-dimensional excitons in a narrow GaAs–AlGaAs quantum well. Phys. Rev. Lett. 83, 2652–2655 (1999).

    Article  ADS  Google Scholar 

  24. Kasprzak, J. & Langbein, W. Vectorial four-wave mixing field dynamics from individual excitonic transitions. Phys. Rev. B 78, 041103 (2008).

    Article  ADS  Google Scholar 

  25. Erland, J. & Balslev, I. Theory of quantum beat and polarization interference in four-wave mixing. Phys. Rev. A 48, 1765–1768 (1993).

    Article  ADS  Google Scholar 

  26. Langbein, W. & Hvam, J. M. Localization-enhanced biexciton binding in semiconductors. Phys. Rev. B 59, 15405–15408 (1999).

    Article  ADS  Google Scholar 

  27. Savona, V. & Langbein, W. Realistic heterointerface model for excitonic states in growth-interrupted GaAs quantum wells. Phys. Rev. B 74, 075311 (2006).

    Article  ADS  Google Scholar 

  28. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    Article  ADS  Google Scholar 

  29. Patton, B., Woggon, U., Maingault, L., Mariette, H. & Langbein, W. Time- and spectrally-resolved four-wave mixing in single CdTe/ZnTe quantum dots. Phys. Rev. B 73, 235354 (2006).

    Article  ADS  Google Scholar 

  30. Danckwerts, J., Ahn, K. J., Förstner, J. & Knorr, A. Theory of ultrafast nonlinear optics of Coulomb-coupled semiconductor quantum dots: Rabi oscillations and pump–probe spectra. Phys. Rev. B 73, 165318 (2006).

    Article  ADS  Google Scholar 

  31. Parascandolo, G. & Savona, V. Long-range radiative interaction between semiconductor quantum dots. Phys. Rev. B 71, 045335 (2005).

    Article  ADS  Google Scholar 

  32. Hell, S. W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    Article  ADS  Google Scholar 

  33. Leosson, K., Jensen, J. R., Langbein, W. & Hvam, J. M. Exciton localization and interface roughness in growth-interrupted GaAs–AlAs quantum wells. Phys. Rev. B 61, 10322–10329 (2000).

    Article  ADS  Google Scholar 

  34. Andreani, L. C. & Pasquarello, A. Accurate theory of excitons in GaAs–Ga1–xAlxAs quantum wells. Phys. Rev. B 42, 8928–8938 (1990).

    Article  ADS  Google Scholar 

  35. Gammon, D., Shanabrook, B. V. & Katzer, D. S. Excitons, phonons, and interfaces in GaAs/AlAs quantum-well structures. Phys. Rev. Lett. 67, 1547–1550 (1991).

    Article  ADS  Google Scholar 

  36. Kasprzak, J. & Langbein, W. Four-wave mixing from individual excitons: intensity dependence and imaging. Phys. Status Solidi B 246, 820–823 (2009).

    Article  ADS  Google Scholar 

  37. Axt, V. M., Kuhn, T., Vagov, A. & Peeters, F. M. Phonon-induced pure dephasing in exciton–biexciton quantum dot systems driven by ultrafast laser pulse sequences. Phys. Rev. B 62, 125309 (2005).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge support by the UK Engineering and Physical Sciences Research Council (EPSRC) (contract no. EP/D025303/1), and the European Commission under a Marie Curie Fellowship (FP7-PEOPLE-2007-2-1-IEF, ‘CUSMEQ’ contract no. 219762).

Author information

Authors and Affiliations

Authors

Contributions

The experiments were designed by W.L., set up by W.L. and B.P., and performed by W.L. and J.K. Data were analysed by J.K. and W.L. Analysis tools were provided by W.L. and B.P. Theoretical modelling and interpretation were performed by W.L. and V.S.

Corresponding authors

Correspondence to J. Kasprzak or W. Langbein.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kasprzak, J., Patton, B., Savona, V. et al. Coherent coupling between distant excitons revealed by two-dimensional nonlinear hyperspectral imaging. Nature Photon 5, 57–63 (2011). https://doi.org/10.1038/nphoton.2010.284

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.284

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing