Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Heralded generation of entangled photon pairs

Abstract

Entangled photons are a crucial resource for quantum communication and linear optical quantum computation. Unfortunately, the applicability of many photon-based schemes is limited due to the stochastic character of the photon sources. Therefore, a worldwide effort has focused on overcoming the limitation of probabilistic emission by generating two-photon entangled states conditioned on the detection of auxiliary photons. Here we present the first heralded generation of photon states that are maximally entangled in polarization with linear optics and standard photon detection from spontaneous parametric downconversion1. We use the downconversion state corresponding to the generation of three photon pairs, where the coincident detection of four auxiliary photons unambiguously heralds the successful preparation of the entangled state2. This controlled generation of entangled photon states is a significant step towards the applicability of a linear optics quantum network, in particular for entanglement swapping, quantum teleportation, quantum cryptography and scalable approaches towards photonics-based quantum computing3.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Set-up for the heralded generation of entangled photon pairs.
Figure 2: Probability of heralded entanglement generation for various beamsplitter transmissions.
Figure 3: Experimentally obtained fidelities for the two-qubit polarization state with respect to the ideal state |φ+〉 for various beamsplitter transmissions.
Figure 4: Effect of higher-order emission on polarization correlations.

Similar content being viewed by others

References

  1. Kwiat, P. G. et al. New high-intensity source of polarization-entangled photon pairs. Phys. Rev. Lett. 75, 4337–4341 (1995).

    Article  ADS  Google Scholar 

  2. Śliwa, C. & Banaszek, K. Conditional preparation of maximal polarization entanglement. Phys. Rev. A 67, 030101 (2003).

    Article  ADS  MathSciNet  Google Scholar 

  3. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  4. Knill, E., Laflamme, R. & Milburn, G. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  5. Pittman, T., Jacobs, B. & Franson, J. Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001).

    Article  ADS  Google Scholar 

  6. O'Brien, J. L., Pryde, G. J., White, A. G., Ralph, T. C. & Branning, D. Demonstration of an all-optical quantum controlled-NOT gate. Nature 426, 264–267 (2003).

    Article  ADS  Google Scholar 

  7. Pittman, T., Fitch, M., Jacobs, B. & Franson, J. Experimental controlled-NOT logic gate for single photons in the coincidence basis. Phys. Rev. A 68, 032316 (2003).

    Article  ADS  Google Scholar 

  8. Gasparoni, S., Pan, J.-W., Walther, P., Rudolph, T. & Zeilinger, A. Realization of a photonic controlled-NOT gate sufficient for quantum computation. Phys. Rev. Lett. 93, 020504 (2004).

    Article  ADS  Google Scholar 

  9. Kwiat, P., Mitchell, J., Schwindt, P. & White, A. Grover's search algorithm: an optical approach. J. Mod. Opt. 47, 257–266 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  10. Prevedel, R. et al. High-speed linear optics quantum computing using active feed-forward. Nature 445, 65–69 (2007).

  11. Tame, M. S. et al. Experimental realization of Deutsch's algorithm in a one-way quantum computer. Phys. Rev. Lett. 98, 140501 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  12. Lu, C.-Y., Browne, D. E., Yang, T. & Pan, J.-W. Demonstration of a compiled version of Shor's quantum factoring algorithm using photonic qubits. Phys. Rev. Lett. 99, 250504 (2007).

    Article  ADS  Google Scholar 

  13. Lanyon, B. P. et al. Experimental demonstration of a compiled version of Shor's algorithm with quantum entanglement. Phys. Rev. Lett. 99, 250505 (2007).

    Article  ADS  Google Scholar 

  14. Walther, P. et al. Experimental one-way quantum computing. Nature 434, 169–176 (2005).

    Article  ADS  Google Scholar 

  15. Kimble, H. The quantum internet. Nature 453, 1023–1030 (2008).

  16. Michler, P. et al. A quantum dot single-photon turnstile device. Science 290, 2282–2285 (2000).

    Article  ADS  Google Scholar 

  17. Kurtsiefer, C., Mayer, S., Zarda, P. & Weinfurter, H. Stable solid-state source of single photons. Phys. Rev. Lett. 85, 290–293 (2000).

  18. Pittman, T. et al. Heralded two-photon entanglement from probabilistic quantum logic operations on multiple parametric down-conversion sources. IEEE J. Sel. Top. Quantum Electron. 9, 1478–1482 (2003).

    Article  ADS  Google Scholar 

  19. Walther, P., Aspelmeyer, M. & Zeilinger, A. Heralded generation of multiphoton entanglement. Phys. Rev. A 75, 012313 (2007).

    Article  ADS  Google Scholar 

  20. Kok, P. & Braunstein, S. Limitations on the creation of maximal entanglement. Phys. Rev. A 62, 064301 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  21. Zhang, Q. et al. Experimental quantum teleportation of a two-qubit composite system. Nature Phys. 2, 678–682 (2006).

    Article  ADS  Google Scholar 

  22. Wieczorek,W. et al. Experimental entanglement of a six-photon symmetric Dicke state. Phys. Rev. Lett. 103, 020504 (2009).

    Article  ADS  Google Scholar 

  23. Prevedel, R. et al. Experimental realization of Dicke states of up to six qubits for multiparty quantum networking. Phys. Rev. Lett. 103, 020503 (2009).

    Article  ADS  Google Scholar 

  24. Rådmark, M., Zukowski, M. & Bourennane, M. Experimental high fidelity six-photon entangled state for telecloning protocols. New J. Phys. 11, 103016 (2009).

    Article  ADS  Google Scholar 

  25. Coffman, V., Kundu, J. & Wootters,W. K. Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  26. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  27. Horodecki, R., Horodecki, P. & Horodecki, M. Violating Bell ineqaulity by mixed spin–1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  28. Wagenknecht, C. et al. Experimental demonstration of a heralded entanglement Source. Nature Photon. (in the press).

  29. James, D., Kwiat, P., Munro, W. & White, A. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  30. Hradil, Z. Quantum-state estimation. Phys. Rev. A 55, R1561–R1564 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  31. Banaszek, K., D'Ariano, G. M., Paris, M. G. A. & Sacchi, M. F. Maximum-likelihood estimation of the density matrix. Phys. Rev. A 61, 010304 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to R. Prevedel, X. Ma, M. Aspelmeyer, Č. Brukner and T. Pittman for discussions and G. Mondl for assistance with the electronics. This work was supported by the Austrian Science Fund (FWF), the Intelligence Advanced Research Projects Activity (IARPA) under the Army Research Office (ARO), the European Commission under the Integrated Project Qubit Applications (QAP) and Quantum Interfaces, Sensors, and Communication based on Entanglement (Q-ESSENCE) and the IST directorate, the ERC Senior Grant (QIT4QAD) and the Marie-Curie research training network EMALI.

Author information

Authors and Affiliations

Authors

Contributions

S.B. and G.C. designed and performed experiments, analysed data and wrote the manuscript. A.Z. supervised the project and edited the manuscript. P.W. designed experiments, analysed data, wrote the manuscript and supervised the project.

Corresponding author

Correspondence to Philip Walther.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barz, S., Cronenberg, G., Zeilinger, A. et al. Heralded generation of entangled photon pairs. Nature Photon 4, 553–556 (2010). https://doi.org/10.1038/nphoton.2010.156

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.156

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing