Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Room-temperature subwavelength metallo-dielectric lasers

Abstract

We demonstrate room-temperature pulsed laser emission from optically pumped metallo-dielectric cavities that are smaller than their emission wavelength in all three dimensions. The cavity consists of an aluminium/silica bi-layer shield surrounding an InGaAsP disk in which the thickness of the silica layer is optimized to minimize the gain threshold of the laser. The lasers are pumped using a 1,064-nm pulsed fibre laser with a pulse width of 12 ns and repetition rate of 300 kHz. Lasing emission at 1.43 µm is observed from a laser with slightly elliptical gain core with major and minor diameters of 490 and 420 nm, respectively. Owing to the isolation provided by the aluminium shield, this laser design approach can be used to create arrays of uncoupled lasers with emitter densities that are close to the Rayleigh resolution limit.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Modes of a semiconductor disk.
Figure 2: Optimized metallo-dielectric cavity.
Figure 3: Various stages of the fabrication process.
Figure 4: Room-temperature lasing results.

Similar content being viewed by others

References

  1. McCall, S. L., Levi, A. F. J., Slusher, R. E., Pearton, S. J. & Logan, R. A. Whispering-gallery mode microdisk lasers. Appl. Phys. Lett. 60, 289–291 (1992).

    Article  ADS  Google Scholar 

  2. Jin Shan, P., Po Hsiu, C., Tsin Dong, L., Yinchieh, L. & Kuochou, T. 0.66 µm InGaP/InGaAlP single quantum well microdisk lasers. Jpn J. Appl. Phys., Part 2 37, L643–L645 (1998).

    Article  Google Scholar 

  3. Md Zain, A. R., Johnson, N. P., Sorel, M. & De La Rue, R. M. High quality-factor 1-D-suspended photonic crystal/photonic wire silicon waveguide micro-cavities. IEEE Photon. Technol. Lett. 21, 1789–1791 (2009).

    Article  ADS  Google Scholar 

  4. Akahane, Y., Asano, T., Song, B. S. & Noda, S. High-Q photonic nanocavity in a two-dimensional photonic crystal. Nature 425, 944–947 (2003).

    Article  ADS  Google Scholar 

  5. Song, Q., Cao, H., Ho, S. T. & Solomon, G. S. Near-IR subwavelength microdisk lasers. Appl. Phys. Lett. 94, 061109 (2009).

    Article  ADS  Google Scholar 

  6. Smotrova, E. I., Nosich, A. I., Benson, T. M. & Sewell, P. Optical coupling of whispering-gallery modes of two identical microdisks and its effect on photonic molecule lasing. IEEE J. Sel. Top. Quantum Electron. 12, 78–85 (2006).

    Article  ADS  Google Scholar 

  7. Nezhad, M. P., Tetz, K. & Fainman, Y. Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides. Opt. Express 12, 4072–4079 (2004).

    Article  ADS  Google Scholar 

  8. Min, B. K. et al. High-Q surface-plasmon–polariton whispering-gallery microcavity. Nature 457, 455–458 (2009).

    Article  ADS  Google Scholar 

  9. Hill, M. T. et al. Lasing in metallic-coated nanocavities. Nature Photon. 1, 589–594 (2007).

    Article  ADS  Google Scholar 

  10. Johnson, P. B. & Christy, R. W. Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972).

    Article  ADS  Google Scholar 

  11. Goebel, E. O., Luz, G. & Schlosser, E. Optical gain spectra of InGaAsP–InP double heterostructures. IEEE J. Quantum Electron. 15, 697–700 (1979).

    Article  ADS  Google Scholar 

  12. Korbl, M., Groning, A., Schweizer, H. & Gentner, J. L. Gain spectra of coupled InGaAsP/InP quantum wells measured with a segmented contact traveling wave device. J. Appl. Phys. 92, 2942–2944 (2002).

    Article  ADS  Google Scholar 

  13. Hill, M. T. et al. Lasing in metal–insulator–metal sub-wavelength plasmonic waveguides. Opt. Express 17, 11107–11112 (2009).

    Article  ADS  Google Scholar 

  14. Mizrahi, A. et al. Low threshold gain metal coated laser nanoresonators. Opt. Lett. 33, 1261–1263 (2008).

    Article  ADS  Google Scholar 

  15. Palik, E. D. Handbook of Optical Constants of Solids (Academic Press, 1997).

    Google Scholar 

  16. Bennett, B. R., Soref, R. A. & Delalamo, J. A. Carrier induced change in refractive index of InP, GaAs and InGaAsP. IEEE J. Quantum Electron. 26, 113–122 (1990).

    Article  ADS  Google Scholar 

  17. Chua, C. L., Thornton, R. L., Treat, D. W. & Donaldson, R. M. Independently addressable VCSEL arrays on 3 µm pitch. IEEE Photon. Technol. Lett. 10, 917–919 (1998).

    Article  ADS  Google Scholar 

  18. Kroner, A., Rinaldi, F., Rosch, R. & Michalzik, R. Optical particle manipulation by application-specific densely packed VCSEL arrays. Electron. Lett. 44, 353–354 (2008).

    Article  Google Scholar 

  19. Oulton, R. F. et al. Plasmon lasers at deep subwavelength scale. Nature 461, 629–632 (2009).

    Article  ADS  Google Scholar 

  20. Altug, H., Englund, D. & Vuckovic, J. Ultrafast photonic crystal nanocavity laser. Nature Phys. 2, 484–488 (2006).

    Article  ADS  Google Scholar 

  21. Rao, Z. L., Hesselink, L. & Harris, J. S. High-intensity bowtie-shaped nano-aperture vertical-cavity surface-emitting laser for near-field optics. Opt. Lett. 32, 1995–1997 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge helpful discussions with C. Tu (fabrication), A. Vakil-Amirkhizi (thermo-mechanical analysis), D. Van Orden and Q. Gu (optical simulations) and also support from the Defense Advanced Research Projects Agency (DARPA) (under the Nanoscale Architecture for Coherent Hyperoptical Sources (NACHOS) programme) and the Center for Integrated Access Networks, National Science Foundation and Engineering Research Center (CIAN, NSF and ERC) (under grant no. EEC-0812072).

Author information

Authors and Affiliations

Authors

Contributions

M.P.N., B.S., A.M. and V.L. carried out the simulation and analysis of the nanolaser. A.M., V.L., B.S. and M.P.N. developed the electromagnetic design of the resonant cavity. The fabrication process was conceived by M.P.N. and Y.F. Fabrication of the devices was carried out by O.B., M.P.N. and L.F. The optical measurements and characterization were performed by A.S. and M.P.N. The manuscript was written by M.P.N. with contributions from B.S., A.S., A.M., V.L. and Y.F.

Corresponding author

Correspondence to Maziar P. Nezhad.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nezhad, M., Simic, A., Bondarenko, O. et al. Room-temperature subwavelength metallo-dielectric lasers. Nature Photon 4, 395–399 (2010). https://doi.org/10.1038/nphoton.2010.88

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.88

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing