Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Polarization-entangled photons produced with high-symmetry site-controlled quantum dots

A Retraction to this article was published on 16 October 2012

Abstract

Efficient sources of entangled photons ‘on demand’ are crucial for the development of quantum information technology1. Such sources cannot rely on parametric down-conversion techniques because they generate entangled pairs with Poissonian statistics2. Biexciton–exciton decays in semiconductor quantum dots have been proposed3 and demonstrated4,5,6 as a source of triggered polarization-entangled photons, but their efficiency is limited by the fine-structure splitting of exciton transitions due to low quantum dot symmetry7. Here, we report on the generation of entangled photons from highly symmetric, site-controlled quantum dots grown in inverted pyramids8,9. Polarization entanglement is demonstrated by measurements of the two-photon density matrix and the confirmation of several entanglement criteria. The unique symmetry and exceptional uniformity of the pyramidal quantum dots provide significant potential for producing sources of triggered entangled photons from as-grown quantum dots without resorting to any of the post-processing steps customarily used in previous studies10.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Pyramidal quantum dots: structure and optical spectra.
Figure 2: Linearly polarized photoluminescence spectra from two different QDs.
Figure 3: Signatures of 2X–X photon entanglement.
Figure 4: Entanglement evaluation.

Similar content being viewed by others

References

  1. Bouwmeester, D., Ekert, A. K. & Zeilinger, A. The Physics of Quantum Information (Springer, 2000).

    Book  Google Scholar 

  2. Edamatsu. K., Oohata, G., Shimizu, R. & Itoh, T. Generation of ultraviolet entangled photons in a semiconductor. Nature 431, 167–170 (2004).

    Article  ADS  Google Scholar 

  3. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    Article  ADS  Google Scholar 

  4. Stevenson, R. M. et al. A semiconductor source of triggered entangled photon pairs. Nature 439, 179–182 (2006).

    Article  ADS  Google Scholar 

  5. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    Article  ADS  Google Scholar 

  6. Hafenbrak, R. et al. Triggered polarization-entangled photon pairs from a single quantum dot up to 30 K. New J. Phys. 9, 315 (2007).

    Article  ADS  Google Scholar 

  7. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    Article  ADS  Google Scholar 

  8. Felici, M. et al. Site-controlled InGaAs quantum dots with tunable emission energy. Small 5, 938–943 (2009).

    Article  ADS  Google Scholar 

  9. Hartmann, A., Ducommun, Y., Leifer, K. & Kapon, E. Structure and optical properties of semiconductor quantum nanostructures self-formed in inverted tetrahedral pyramids. J. Phys.: Condens. Matter 11, 5901–5915 (1999).

    ADS  Google Scholar 

  10. Young, R. J. et al. Quantum-dot sources for single photons and entangled photon pairs. Proc. IEEE 95, 1805–1814 (2007).

    Article  Google Scholar 

  11. Young, R. J. et al. Inversion of exciton level splitting in quantum dots. Phys. Rev. B 72, 113305 (2005).

    Article  ADS  Google Scholar 

  12. Langbein, W. et al. Control of fine structure splitting and biexciton binding in InxGa1–xAs quantum dots by annealing. Phys. Rev. B 69, 161301 (2004).

    Article  ADS  Google Scholar 

  13. Gerardot, B. D. et al. Manipulating exciton fine structure in quantum dots with a lateral electric field. Appl. Phys. Lett. 90, 041101 (2007).

    Article  ADS  Google Scholar 

  14. Stevenson, R. M. et al. Magnetic-field-induced reduction of the exciton polarization splitting in InAs quantum dots. Phys. Rev. B 73, 033306 (2006).

    Article  ADS  Google Scholar 

  15. Seidl, S. et al. Effect of uniaxial stress on excitons in a self-assembled quantum dot. Appl. Phys. Lett. 88, 203113 (2006).

    Article  ADS  Google Scholar 

  16. Michelini, F., Dupertuis, M. A. & Kapon, E. Effects of the one-dimensional quantum barriers in pyramidal quantum dots. Appl. Phys. Lett. 84, 4086–4088 (2004).

    Article  ADS  Google Scholar 

  17. Oberli, D. Y. et al. Coulomb correlations of charged excitons in semiconductor quantum dots. Phys. Rev. B 80, 165312 (2009).

    Article  ADS  Google Scholar 

  18. Singh, R. & Bester, G. Nanowire quantum dots as an ideal source of entangled photon pairs. Phys. Rev. Lett. 103, 063601 (2009).

    Article  ADS  Google Scholar 

  19. Schliwa, A., Winkelnkemper, M., Lochmann, A., Stock, E. & Bimberg, D. In(Ga)As/GaAs quantum dots grown on a (111) surface as ideal sources of entangled photon pairs. Phys. Rev. B 80, 161307 (2009).

    Article  ADS  Google Scholar 

  20. Biasiol, G. & Kapon, E. Mechanisms of self-ordering of quantum nanostructures grown on nonplanar surfaces. Phys. Rev. Lett. 81, 2962–2965 (1998).

    Article  ADS  Google Scholar 

  21. Biasiol, G., Gustafsson, A., Leifer, K. & Kapon. E. Mechanisms of self-ordering in nonplanar epitaxy of semiconductor nanostructures. Phys. Rev. B 65, 205306 (2002).

    Article  ADS  Google Scholar 

  22. Hartmann, A., Ducommun, Y., Kapon, E., Hohenester, U. & Molinari, E. Few-particle effects in semiconductor quantum dots: observation of multicharged excitons. Phys. Rev. Lett. 84, 5648–5651 (2000).

    Article  ADS  Google Scholar 

  23. Baier, M. H., Malko, A., Pelucchi, E., Oberli, D. Y. & Kapon, E. Quantum-dot exciton dynamics probed by photon-correlation spectroscopy. Phys. Rev. B 73, 205321 (2006).

    Article  ADS  Google Scholar 

  24. Mereni, L. O., Dimastrodonato, V., Young. R. J. & Pelucchi. E. A site-controlled quantum dot system offering both high uniformity and spectral purity. Appl. Phys. Lett. 94, 223121 (2009).

    Article  ADS  Google Scholar 

  25. Surrente, A. et al. Dense arrays of ordered pyramidal quantum dots with narrow linewidth photoluminescence spectra. Nanotechnology 20, 415205 (2009).

    Article  Google Scholar 

  26. He, L., Gong, M., Li, C.-F., Guo, G.-C. & Zunger, A. Highly reduced fine-structure splitting in InAs/InP quantum dots offering an efficient on-demand entangled 1.55 µm photon emitter. Phys. Rev. Lett. 101, 157405 (2008).

    Article  ADS  Google Scholar 

  27. Karlsson, K. F. et al. Optical polarization anisotropy and hole states in pyramidal quantum dots. Appl. Phys. Lett. 89, 251113 (2006).

    Article  ADS  Google Scholar 

  28. Hudson, A. J. et al. Coherence of an entangled exciton-photon state. Phys. Rev. Lett. 99, 266802 (2007).

    Article  ADS  Google Scholar 

  29. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  30. Young, R. J. et al. Bell-inequality violation with a triggered photon-pair source. Phys. Rev. Lett. 102, 030406 (2009).

    Article  ADS  Google Scholar 

  31. Gallo, P. et al. Integration of site-controlled pyramidal quantum dots and photonic crystal membrane cavities. Appl. Phys. Lett. 92, 263101 (2008).

    Article  ADS  Google Scholar 

  32. Johne, R. et al. Entangled photon pairs produced by a quantum dot strongly coupled to a microcavity. Phys. Rev. Lett. 100, 240404 (2008).

    Article  ADS  Google Scholar 

  33. Santori, C., Fattal, D., Pelton, M., Solomon, G. S. & Yamamoto, Y. Polarization-correlated photon pairs from a single quantum dot. Phys. Rev. B 66, 045308 (2002).

    Article  ADS  Google Scholar 

  34. Bennett, A. J. et al. Indistinguishable photons from a diode. Appl. Phys. Lett. 92, 193503 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Swiss National Foundation under the National Centre of Competence in Research (NCCR) project Quantum Photonics. The authors also acknowledge fruitful discussions with R.J. Young.

Author information

Authors and Affiliations

Authors

Contributions

A.M. carried out the optical experiments. A.M., M.F. and E.K. analysed the data. A.M., P.G. and B.D. were involved in the fabrication of the samples. P.G. and A.R. performed MOCVD growth of the samples. A.M., M.F., P.G. and E.K. wrote the manuscript. The work was supervised by J.F. and E.K. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to A. Mohan.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohan, A., Felici, M., Gallo, P. et al. Polarization-entangled photons produced with high-symmetry site-controlled quantum dots. Nature Photon 4, 302–306 (2010). https://doi.org/10.1038/nphoton.2010.2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing