Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

An ultra-small, low-power, all-optical flip-flop memory on a silicon chip

Abstract

Ultra-small, low-power, all-optical switching and memory elements, such as all-optical flip-flops, as well as photonic integrated circuits of many such elements, are in great demand for all-optical signal buffering, switching and processing. Silicon-on-insulator is considered to be a promising platform to accommodate such photonic circuits in large-scale configurations. Through heterogeneous integration of InP membranes onto silicon-on-insulator, a single microdisk laser with a diameter of 7.5 µm, coupled to a silicon-on-insulator wire waveguide, is demonstrated here as an all-optical flip-flop working in a continuous-wave regime with an electrical power consumption of a few milliwatts, allowing switching in 60 ps with 1.8 fJ optical energy. The total power consumption and the device size are, to the best of our knowledge, the smallest reported to date at telecom wavelengths. This is also the only electrically pumped, all-optical flip-flop on silicon built upon complementary metal-oxide semiconductor technology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure of the microdisk laser and the lasing characteristics.
Figure 2: Experimental set-up.
Figure 3: Diagrams of the flip-flop operation and measured lasing power at a low switching speed.
Figure 4: High-speed measurement of the switching characteristics.

Similar content being viewed by others

References

  1. Tucker, R. S. Role of optics and electronics in high-capacity routers. IEEE J. Lightwave Technol. 24, 4655–4673 (2006).

    Article  ADS  Google Scholar 

  2. Dorren, H. J., Calabretta, N. & Raz, O. Scaling all-optical packet routers: how much buffering is required? J. Opt. Netw. 7, 936–946 (2008).

    Article  Google Scholar 

  3. Kawaguchi, H. All-optical signal processing using ultrafast polarization bistable VCSELs. 2002 International Topical Meeting on Photonics in Switching 72–74, paper TuB3 (2002).

  4. Li, B. et al. Characterization of all-optical regeneration potentials of a bistable semiconductor ring laser. IEEE J. Lightwave Technol. 27, 4233–4240 (2009).

    Article  ADS  Google Scholar 

  5. Prati, F., Travagnin, M. & Lugiato, L. A. Logic gates and optical switching with vertical-cavity surface-emitting lasers. Phys. Rev. A 55, 690–700 (1997).

    Article  ADS  Google Scholar 

  6. Pleros, N., Apostolopoulos, D., Petrantonakis, D., Stamatiadis, C. & Avramopoulos, H. Optical static RAM cell. IEEE Photon. Technol. Lett. 21, 73–75 (2009).

    Article  ADS  Google Scholar 

  7. Kawaguchi, H., Mori, S., Sato, Y. & Yamayoshi, Y. Optical buffer memory using polarization-bistable vertical-cavity surface-emitting lasers. Jpn J. Appl. Phys. 45, L894–L897 (2006).

    Article  ADS  Google Scholar 

  8. Apostolopoulos, D. et al. Contention resolution for burst-mode traffic using integrated SOA–MZI gate arrays and self-resetting optical flip-flops. IEEE Photon. Technol. Lett. 20, 2024–2026 (2008).

    Article  ADS  Google Scholar 

  9. Vlasov, Y. A., O'Boyle, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  10. Xia, F. N., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  11. Mack, J. P., Burmeister, E. F., Poulsen, H. N., Bowers J. E. & Blumenthal, D. J. Synchronously loaded optical packet buffer. IEEE Photon. Technol. Lett. 20, 1757–1759 (2008).

    Article  ADS  Google Scholar 

  12. Park, H., Mack, J. P., Blumenthal, D. J. & Bowers, J. E. An integrated recirculating optical buffer. Opt. Express 16, 11124–11131 (2008).

    Article  ADS  Google Scholar 

  13. Takahashi, R. et al. Photonic random access memory for 40-Gb/s 16-b burst optical packets. IEEE Photon. Technol. Lett. 16, 1185–1187 (2004).

    Article  ADS  Google Scholar 

  14. Hill, M. T. et al. A fast low-power optical memory based on coupled micro-ring lasers. Nature 432, 206–209 (2004).

    Article  ADS  Google Scholar 

  15. Sorel, M. et al. Operating regimes of GaAs-AlGaAs semiconductor ring lasers: experiment and model. IEEE J. Quantum Electron. 39, 1187–1195 (2003).

    Article  ADS  Google Scholar 

  16. Yuan, G., Wang, Z. & Yu, S. Dynamic switching response of semiconductor ring lasers to NRZ and RZ injection signals. IEEE Photon. Technol. Lett. 20, 785–787 (2008).

    Article  ADS  Google Scholar 

  17. Trita, A. et al. Dynamic operation of all-optical flip-flop based on a monolithic semiconductor ring laser. European Conference on Optical Communication, paper We2C3 (2008).

  18. Mezosi, G., Strain, M. J., Furst, S., Wang, Z. & Sorel, M. Unidirectional bistability in AlGaInAs microring and microdisk semiconductor lasers. IEEE Photon. Technol. Lett. 21, 88–90 (2009).

    Article  ADS  Google Scholar 

  19. Fürst, S., Pérez-Serrano, A., Scirè, A., Sorel, M. & Balle, S. Modal structure, directional and wavelength jumps of integrated semiconductor ring lasers: experiment and theory. Appl. Phys. Lett. 93, 251109 (2008).

    Article  ADS  Google Scholar 

  20. Mori, T., Yamayoshi, Y. & Kawaguchi, H. Low-switching energy and high-repetition-frequency all-optical flip-flop operations of a bistable vertical-cavity surface-emitting laser. Appl. Phys. Lett. 88, 101102 (2006).

    Article  ADS  Google Scholar 

  21. Katayama, T., Kitazawa, T. & Kawaguchi, H. All-optical flip-flop operation using 1.55 µm polarization bistable VCSELs. Conference on Lasers and Electro-Optics/Quantum Electronics and Laser Science Conference, paper CME5 (2008).

  22. Bogaerts, W. et al. Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. IEEE J. Lightwave Technol. 23, 401–412 (2005).

    Article  ADS  Google Scholar 

  23. Tsuchizawa, T. et al. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232–239 (2005).

    Article  ADS  Google Scholar 

  24. Jalali, B. & Fathpour, S. Silicon photonics. IEEE J. Lightwave Technol. 24, 4600–4615 (2006).

    Article  ADS  Google Scholar 

  25. Rong, H. et al. A continuous-wave Raman silicon laser. Nature 433, 725–728 (2005).

    Article  ADS  Google Scholar 

  26. Shinya, A. et al. All-optical flip-flop circuit composed of coupled two-port resonant tunneling filter in two-dimensional photonic crystal slab. Opt. Express 14, 1230–1235 (2006).

    Article  ADS  Google Scholar 

  27. Roelkens, G., Van Thourhout, D., Baets, R., Notzel, R. & Smit, M. Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a silicon-on-insulator waveguide circuit. Opt. Express 14, 8154–8159 (2006).

    Article  ADS  Google Scholar 

  28. Van Campenhout, J. et al. Electrically pumped InP-based microdisk lasers integrated with a nanophotonic silicon-on-insulator waveguide circuit. Opt. Express 15, 6744–6749 (2007).

    Article  ADS  Google Scholar 

  29. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  30. Van Campenhout, J. et al. A compact SOI-integrated multiwavelength laser source based on cascaded InP microdisks. IEEE Photon. Technol. Lett. 20, 1345–1347 (2008).

    Article  ADS  Google Scholar 

  31. Fujita, M., Ushigone, R. & Baba, T. Continuous wave lasing in GaInAsP microdisk injection laser with threshold current of 40 µA. Electron. Lett. 36, 790–791 (2000).

    Article  Google Scholar 

  32. Miller, D. A. B. Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European FP7 ICT-projects HISTORIC, WADIMOS and PhotonFAB, the Belgian Fund for Scientific Research Flanders (FWO), and the IAP-project ‘Photonics@be’. The work of K.H. and T.S. is supported by the Institute for the Promotion of Innovation through Science and Technology (IWT) under a specialization grant. The authors thank M. Verbist for taking the cross-sectional image and acknowledge assistance from S. Verstuyft during device fabrication.

Author information

Authors and Affiliations

Authors

Contributions

G.M. conceived the idea and supervised the project. D.V.T. and R.B. provided assistance in the coordination of the project. L.L., R.K., T.S., G.R., E.G., T.d.V. and P.R. fabricated the devices. L.L., R.K. and K.H. performed the measurements. L.L. and G.M. wrote the manuscript.

Corresponding author

Correspondence to Geert Morthier.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Kumar, R., Huybrechts, K. et al. An ultra-small, low-power, all-optical flip-flop memory on a silicon chip. Nature Photon 4, 182–187 (2010). https://doi.org/10.1038/nphoton.2009.268

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.268

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing