Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rewritable nanoscale oxide photodetector

Abstract

Nanophotonic devices are designed to generate, guide or detect light using structures with nanoscale dimensions that are closely tied to their functionality1,2,3,4. However, the integration of photonic nanostructures with electronic circuitry5 remains one of the most challenging aspects of device development. Here we report the development of rewritable nanoscale photodetectors created at the interface between LaAlO3 and SrTiO3. Nanowire junctions with characteristic dimensions of 2–3 nm are created using a reversible conductive atomic force microscope writing technique6,7. These nanoscale devices exhibit remarkably high gain for their size, in part because of the large electric fields produced in the gap region. The photoconductive response is electric field-tunable and spans the visible-to-near-infrared regime. The ability to integrate rewritable nanoscale photodetectors with nanowires and transistors in a single material platform foreshadows new families of integrated optoelectronic devices and applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Diagram of sample and photoresponse.
Figure 2: Scanning photocurrent microscopy (SPCM) images of various nanostructures written at the LaAlO3/SrTiO3 interface.
Figure 3: Three-terminal, nanoscale, locally gateable photodetector.
Figure 4: Gate-controlled spectral response of photodetector.
Figure 5: Spectral sensitivity and intensity dependence from visible to near-infrared wavelengths.

Similar content being viewed by others

References

  1. Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).

    Article  ADS  Google Scholar 

  2. Sirbuly, D. J., Law, M., Yan, H. & Yang, P. Semiconductor nanowires for subwavelength photonics integration. J. Phys. Chem. B 109, 15190–15213 (2005).

    Article  Google Scholar 

  3. Agarwal, R. & Lieber, C. M. Semiconductor nanowires: optics and optoelectronics. Appl. Phys. A 85, 209–215 (2006).

    Article  ADS  Google Scholar 

  4. Tian, B. et al. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 449, 885–889 (2007).

    Article  ADS  Google Scholar 

  5. Fan, Z., Ho, J. C., Jacobson, Z. A., Razavi, H. & Javey, A. Large-scale, heterogeneous integration of nanowire arrays for image sensor circuitry. Proc. Natl Acad. Sci. USA 105, 11066–11070 (2008).

    Article  ADS  Google Scholar 

  6. Cen, C. et al. Nanoscale control of an interfacial metal–insulator transition at room temperature. Nature Mater. 7, 298–302 (2008).

    Article  ADS  Google Scholar 

  7. Cen, C., Thiel, S., Mannhart, J. & Levy, J. Oxide nanoelectronics on demand. Science 323, 1026–1030 (2009).

    Article  ADS  Google Scholar 

  8. Ohtomo, A. & Hwang, H. Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423–426 (2004).

    Article  ADS  Google Scholar 

  9. Mannhart, J., Blank, D., Hwang, H., Millis, A. & Triscone, J.-M. Two-dimensional electron gases at oxide interfaces. MRS Bull. 33, 1027–1034 (2008).

    Article  Google Scholar 

  10. Thiel, S., Hammerl, G., Schmehl, A., Schneider, C. W. & Mannhart, J. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313, 1942–1945 (2006).

    Article  ADS  Google Scholar 

  11. Bogorin, D. F. et al. Nanoscale rectification at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97, 013102 (2010).

    Article  ADS  Google Scholar 

  12. Kawasaki, M. et al. Atomic control of the SrTiO3 crystal surface. Science 266, 1540–1542 (1994).

    Article  ADS  Google Scholar 

  13. Balasubramanian, K., Burghard, M., Kern, K., Scolari, M. & Mews, A. Photocurrent imaging of charge transport barriers in carbon nanotube devices. Nano Lett. 5, 507–510 (2005).

    Article  ADS  Google Scholar 

  14. Xia, F. et al. Photocurrent imaging and efficient photon detection in a graphene transistor. Nano Lett. 9, 1039–1044 (2009).

    Article  ADS  Google Scholar 

  15. Dudley, J. M., Genty, G. & Coen, S. Supercontinuum generation in photonic crystal fiber. Rev. Mod. Phys. 78, 1135–1184 (2006).

    Article  ADS  Google Scholar 

  16. Stöckmann, F. Superlinear photoconductivity. Phys. Status Solidi 34, 751–757 (1969).

    Article  Google Scholar 

  17. Prezioso, S. et al. Superlinear photovoltaic effect in Si nanocrystals based metal–insulator–semiconductor devices. Appl. Phys. Lett. 94, 062108 (2009).

    Article  ADS  Google Scholar 

  18. van Benthem, K., Elsasser, C. & French, R. H. Bulk electronic structure of SrTiO3: experiment and theory. J. Appl. Phys. 90, 6156–6164 (2001).

    Article  ADS  Google Scholar 

  19. Grabner, L. Photoluminescence in SrTiO3 . Phys. Rev. 177, 1315–1323 (1969).

    Article  ADS  Google Scholar 

  20. Leonelli, R. & Brebner, J. L. Time-resolved spectroscopy of the visible emission band in strontium titanate. Phys. Rev. B 33, 8649–8656 (1986).

    Article  ADS  Google Scholar 

  21. Okamura, H. et al. Photogenerated carriers in SrTiO3 probed by mid-infrared absorption. J. Phys. Soc. Jpn 75, 023703 (2006).

    Article  ADS  Google Scholar 

  22. Kareev, M. et al. Atomic control and characterization of surface defect states of TiO2 terminated SrTiO3 single crystals. Appl. Phys. Lett. 93, 061909 (2008).

    Article  ADS  Google Scholar 

  23. Zhang, J., Walsh, S., Brooks, C., Schlom, D. G. & Brillson, L. J. Depth-resolved cathodoluminescence spectroscopy study of defects in SrTiO3 . J. Vac. Sci. Technol. B 26, 1466–1471 (2008).

    Article  Google Scholar 

  24. Herranz, G. et al. High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98, 216803 (2007).

    Article  ADS  Google Scholar 

  25. Kalabukhov, A. et al. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75, 121404 (2007).

    Article  ADS  Google Scholar 

  26. Basletic, M. et al. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nature Mater. 7, 621–625 (2008).

    Article  ADS  Google Scholar 

  27. Seo, S. S. A. et al. Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures. Appl. Phys. Lett. 95, 082107 (2009).

    Article  ADS  Google Scholar 

  28. Shibuya, K., Ohnishi, T., Sato, T. & Lippmaa, M. Metal–insulator transition in SrTiO3 induced by field effect. J. Appl. Phys. 102, 083713 (2007).

    Article  ADS  Google Scholar 

  29. Feng, T. Anomalous photoelectronic processes in SrTiO3 . Phys. Rev. B 25, 627–642 (1982).

    Article  ADS  Google Scholar 

  30. Cui, Y., Wei, Q., Park, H. & Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293, 1289–1292 (2001).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the Defense Advanced Research Projects Agency (W911N3-09-10258) (J.L.), the Fine Foundation (J.L.) and the National Science Foundation through grants DMR-0704022 (J.L.) and DMR-0906443 (C.-B.E).

Author information

Authors and Affiliations

Authors

Contributions

P.I. and J.L. conceived the study. C.W.B., C.M.F. and C.-B.E. supplied materials. P.I., Y.M., D.F.B. and C.C. performed c-AFM lithography. P.I. and Y.M. performed the optical experiments and analysed data. C.C. performed finite element analysis. P.I. and J.L. wrote the paper.

Corresponding author

Correspondence to Jeremy Levy.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Irvin, P., Ma, Y., Bogorin, D. et al. Rewritable nanoscale oxide photodetector. Nature Photon 4, 849–852 (2010). https://doi.org/10.1038/nphoton.2010.238

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.238

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing