Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code

Abstract

A fundamental requirement for enabling fault-tolerant quantum information processing is an efficient quantum error-correcting code that robustly protects the involved fragile quantum states from their environment1,2,3,4,5,6,7,8,9,10. Just as classical error-correcting codes are indispensible in today's information technologies, it is believed that quantum error-correcting code will play a similarly crucial role in tomorrow's quantum information systems. Here, we report on the experimental demonstration of a quantum erasure-correcting code that overcomes the devastating effect of photon losses. Our quantum code is based on linear optics, and it protects a four-mode entangled mesoscopic state of light against erasures. We investigate two approaches for circumventing in-line losses, and demonstrate that both approaches exhibit transmission fidelities beyond what is possible by classical means. Because in-line attenuation is generally the strongest limitation to quantum communication, such an erasure-correcting code provides a new tool for establishing quantum optical coherence over longer distances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematics of the experimental QECC set-up.
Figure 2: Results of the deterministic QECC protocol.
Figure 3: Results of the probabilistic QECC protocol.
Figure 4: Performance of the probabilistic QECC protocol.

Similar content being viewed by others

References

  1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge Univ. Press, 2000).

    MATH  Google Scholar 

  2. Shor, P. W. Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493–R2496 (1995).

    Article  ADS  Google Scholar 

  3. Steane, A. M. Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  4. Calderbank, A. R. & Shor, P. W. Good quantum error-correcting codes exist. Phys. Rev. A. 54, 1098–1105 (1996).

    Article  ADS  Google Scholar 

  5. Laflamme, R., Miquel, C., Paz, J. P. & Zurek, W. H. Perfect quantum error correcting code. Phys. Rev. Lett. 77, 198–201 (1996).

    Article  ADS  Google Scholar 

  6. Bennett, C. H., DiVincenzo, D. P., Smolin, J. A. & Wootters, W. K. Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  7. Grassl, M., Beth, Th. & Pellizzari, T. Codes for the quantum erasure channel. Phys. Rev. A 56, 33–38 (1997).

    Article  ADS  MathSciNet  Google Scholar 

  8. Braunstein, S. Error correction for continuous quantum variables. Phys. Rev. Lett. 80, 4084–4087 (1998).

    Article  ADS  Google Scholar 

  9. Lloyd, S. & Slotine, J.-J. E. Analog quantum error correction. Phys. Rev. Lett. 80, 4088–4091 (1998).

    Article  ADS  Google Scholar 

  10. Braunstein, S. L. Quantum error correction for communication with linear optics. Nature 394, 47–49 (1998).

    Article  ADS  Google Scholar 

  11. Duan, L. M., Lukin, M. D., Cirac, J. I. & Zoller, P. Long-distance quantum communication with atomic ensembles and linear optics. Nature 414, 413–418 (2001).

    Article  ADS  Google Scholar 

  12. Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    Article  ADS  Google Scholar 

  13. Knill, E. Quantum computing with realistically noisy devices. Nature 434, 39–44 (2005).

    Article  ADS  Google Scholar 

  14. Wilde, M. M., Krovi, H. & Brun, T. A. Entanglement-assisted quantum error correction with linear optics. Phys. Rev. A 76, 052308 (2007).

    Article  ADS  Google Scholar 

  15. Niset, J., Andersen, U. L. & Cerf, N. J. Experimentally feasible quantum erasure-correcting code for continuous variables. Phys. Rev. Lett. 101, 130503 (2008).

    Article  ADS  Google Scholar 

  16. Cory, D. G. et al. Experimental quantum error correction. Phys. Rev. Lett. 81, 2152–2155 (1998).

    Article  ADS  Google Scholar 

  17. Chiaverini, J. et al. Realization of quantum error correction. Nature 432, 602–605 (2004).

    Article  ADS  Google Scholar 

  18. Pittmann, T. B., Jacobs, B. C. & Franson, J. D. Demonstration of quantum error correction using linear optics. Phys. Rev. A 71, 052332 (2005).

    Article  ADS  Google Scholar 

  19. Aoki, T. et al. Quantum error correction beyond qubits, Nature Phys. 5, 541–546 (2009).

    Article  ADS  Google Scholar 

  20. Wittmann, C. et al. Quantum filtering of optical coherent states. Phys. Rev. A 78, 032315 (2008).

    Article  ADS  Google Scholar 

  21. Majumdar, A. K. & Ricklin, J. C. Free-Space Laser Communications (Springer, 2008).

    Book  Google Scholar 

  22. Elser, D. et al. Feasibility of free space quantum key distribution with coherent polarization states, N. J. Phys. 11, 045014 (2009).

    Article  Google Scholar 

  23. Niset, J., Fiurasek, J. & Cerf, N. J. No-go theorem for Gaussian quantum error correction. Phys. Rev. Lett. 102, 120501 (2009).

    Article  ADS  Google Scholar 

  24. Lance, A. M. et al. Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004).

    Article  ADS  Google Scholar 

  25. Niset, J. et al. Superiority of entangled measurements over all local strategies for the estimation of product coherent states. Phys. Rev. Lett. 98, 260404 (2007).

    Article  ADS  Google Scholar 

  26. Van Loock, P. et al. Broadband teleportation. Phys. Rev. A 62, 022309 (2000).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the Future and Emerging Technologies programme of the European Commission under the FP7 FET-Open grant no. 212008 (COMPAS), by the Danish Agency for Science Technology and Innovation under grant no. 274-07-0509, by the Deutsche Forschungsgesellschaft, and by the Interuniversity Attraction Poles program of the Belgian Science Policy Office under grant IAP P6-10 (photonics@be).

Author information

Authors and Affiliations

Authors

Contributions

M.L. and M.S. performed the experiments. J.N. and N.J.C. performed the theoretical calculations. M.L., M.S. and A.H. performed the data analysis. M.L., N.J.C. and U.L.A. wrote the manuscript. M.L., M.S., U.L.A. and G.L. performed the project planing. All authors discussed the results and implications and commented on the manuscript at all stages. Correspondence and requests for additional materials should be addressed to M.L. or U.L.A.

Corresponding authors

Correspondence to Mikael Lassen or Ulrik L. Andersen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lassen, M., Sabuncu, M., Huck, A. et al. Quantum optical coherence can survive photon losses using a continuous-variable quantum erasure-correcting code. Nature Photon 4, 700–705 (2010). https://doi.org/10.1038/nphoton.2010.168

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.168

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing