Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Liquid-crystal lasers

Abstract

Liquid-crystal lasers are a burgeoning area in the field of soft-matter photonics that may herald a new era of ultrathin, highly versatile laser sources. Such lasers encompass a multitude of remarkable features, including wideband tunability, large coherence area and, in some cases, multidirectional emission. They have the potential to combine large output powers with miniature cavity dimensions — two properties that have traditionally been incompatible. Their potential applications are diverse, ranging from miniature medical diagnostic tools to large-area holographic laser displays. Here we discuss the scientific origins of this technology and give a brief synopsis of the cutting-edge research currently being carried out worldwide.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Photonic bandgaps for various phases.
Figure 2: Laser emission in three dimensions from a blue phase II liquid crystal.
Figure 3: Low-threshold laser emission from blue phase I.
Figure 4: Typical emission characteristics of a bandedge liquid-crystal laser.
Figure 5: Liquid-crystal laser arrays.
Figure 6: Defect-mode liquid-crystal structures.

Similar content being viewed by others

References

  1. Yang, D.-K. & Wu, S.-T. Fundamentals of Liquid Crystal Devices (Wiley, 2006).

    Google Scholar 

  2. Reinitzer, F. Beiträge zur Kenntniss des Cholesterins. Monatsh. Chem. 9, 421–441 (1888).

    Google Scholar 

  3. Il'chishin, I., Tikhonov, E., Tishchenko, V. & Shpak, M. Generation of a tunable radiation by impurity cholesteric liquid crystals. JETP Lett. 32, 24–27 (1978).

    ADS  Google Scholar 

  4. Goldberg, L. S. & Schnur, J. M. Tunable internal-feedback liquid crystal-dye laser. US patent 3,771,065 (1973).

  5. Yablonovitch, E. Inhibited spontaneous emission in solid state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  6. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    ADS  Google Scholar 

  7. Dowling, J. P., Scalora, M., Bloemer, M. J. & Bowden, C. M. The photonic band-edge laser: A new approach to gain enhancement. J. Appl. Phys. 75, 1896–1899 (1994).

    ADS  Google Scholar 

  8. Kopp, V. I., Fan, B., Vithana, H. K. M. & Genack A. Z. Low-threshold lasing at the edge of a photonic stop band in cholesteric liquid crystals. Opt. Lett. 23, 1707–1709 (1998).

    ADS  Google Scholar 

  9. Taheri, B., Munoz, A., Palffy-Muhoray P. & Twieg, R. Low threshold lasing in cholesteric liquid crystals. Mol. Cryst. Liq. Cryst. 358, 73–82 (2001).

    Google Scholar 

  10. Alvarez, E. et al. Mirrorless lasing and energy transfer in cholesteric liquid crystals doped with dyes. Mol. Cryst. Liq. Cryst. 369, 75–82 (2001).

    Google Scholar 

  11. Ozaki, M., Kasano, M., Ganzke, D., Hasse, W. & Yoshino. K. Mirrorless lasing in a dye-doped ferroelectric liquid crystal. Adv. Mater. 14, 306–309 (2002).

    Google Scholar 

  12. Ford, A. D., Morris, S. M., Pivnenko, M. N. & Coles, H. J. A comparison of photonic band edge lasing in the chiral nematic N* and smectic C* phases. Proc. SPIE 5289, 213–220 (2004).

    ADS  Google Scholar 

  13. Schmidtke, J., Stille, W., Finkelmann, H. & Kim, S. T. Laser emission in a dye doped cholesteric polymer network. Adv. Mater. 14, 746–749 (2002).

    Google Scholar 

  14. Shibaev, P. V., Tang, K., Genack, A. Z., Kopp, V. & Green, M. M. Lasing from a stiff chain polymeric lyotropic liquid crystal. Macromolecules 35, 3022–3025 (2002).

    ADS  Google Scholar 

  15. Matsui, T., Ozaki, R., Funamoto, K., Ozaki, M. & Yoshino, K. Flexible mirrorless laser based on a free-standing film of photopolymerized cholesteric liquid crystal. Appl. Phys. Lett. 81, 3741–3743 (2002).

    ADS  Google Scholar 

  16. Shibaev, P. V., Madsen, J. & Genack, A. Z. Lasing and narrowing of spontaneous emission from responsive cholesteric films. Chem. Mater. 16, 1397–1399 (2004).

    Google Scholar 

  17. Ohta, T. et al. Monodomain film formation and lasing in dye-doped polymer cholesteric liquid crystals. Jpn. J. Appl. Phys. 43, 6142–6144 (2004).

    ADS  Google Scholar 

  18. Finkelmann, H., Kim, S. T., Muñoz, A., Palffy-Muhoray, P. & Taheri, B. Tunable mirrorless lasing in cholesteric liquid crystalline elastomers. Adv. Mater. 13, 1069–1072 (2001).

    Google Scholar 

  19. Shibaev, P. V., Kopp V., Genack, A. & Hanelt, E. Lasing from chiral photonic band gap materials based on cholesteric glasses. Liq. Cryst. 30, 1391–1400 (2003).

    Google Scholar 

  20. Wei, S. K. H., Chen, S. H., Dolgaleva, K., Lukishova, S. G. & Boyd R. W. Robust organic lasers comprising glassy-cholesteric pentafluorene doped with a red-emitting oligofluorene. Appl. Phys. Lett. 94, 041111 (2009).

    ADS  Google Scholar 

  21. Chanishvili, A. et al. Lasing in an intermediated twisted phase between cholesteric and smectic A phase. Appl. Phys. Lett. 88, 101105 (2006).

    ADS  Google Scholar 

  22. Cao, W., Muñoz, A., Palffy-Muhoray, P. & Taheri, B. Lasing in a three-dimensional photonic crystal of the liquid crystalline blue phase II. Nature Mater. 1, 111–113 (2002).

    ADS  Google Scholar 

  23. Yokoyama, S., Mashiko, S., Kikuchi, H., Uchida, K. & Nagamura, T. Laser emission from a polymer-stabilized liquid-crystalline blue phase. Adv. Mater. 18, 48–51 (2006).

    Google Scholar 

  24. Morris, S. M. et al. The emission characteristics of liquid crystal lasers. J. Soc. Inf. Display 14, 565–573 (2006).

    Google Scholar 

  25. Funamoto, K., Ozaki, M. & Yoshino, K. Discontinuous shift of lasing wavelength with temperature in cholesteric liquid crystal. Jpn. J. Appl. Phys. 42, L1523–L1525 (2003).

    ADS  Google Scholar 

  26. Morris, S. M., Ford, A. D., Pivnenko, M. N. & Coles, H. J. Enhanced emission from liquid-crystal lasers. J. Appl. Phys 97, 023103 (2005).

    ADS  Google Scholar 

  27. Huang, Y., Zhou, Y., Doyle, C. & Wu, S.-T. Tuning the photonic band gap in cholesteric liquid crystals by temperature-dependent dopant solubility. Opt. Express 14, 1236–1242 (2006).

    ADS  Google Scholar 

  28. Chanishvili, A. et al. Phototunable lasing in dye-doped cholesteric liquid crystals. Appl. Phys. Lett. 8, 5353–5355 (2003).

    ADS  Google Scholar 

  29. Furumi, S., Yokoyama, S., Otomo, A. & Mashiko, S. Phototunable photonic bandgap in a chiral liquid crystal laser device. Appl. Phys. Lett. 84, 2491–2493 (2004).

    ADS  Google Scholar 

  30. Shibaev, P. V., Sanford, R. L., Chiappetta, D., Milner, V. & Genack A. Z. Light controllable tuning and switching of lasing in chiral liquid crystals. Opt.Express 13, 2358–2363 (2005).

    ADS  Google Scholar 

  31. Furumi, S., Yokoyama, S., Otomo, A. & Mashiko, S. Electrical control of the structure and lasing in chiral photonic band-gap liquid crystals. Appl. Phys. Lett. 82, 16–18 (2003).

    ADS  Google Scholar 

  32. Kasano, M., Ozaki, M., Yoshino, K., Ganzke, D. & Haase, W. Electrically tunable waveguide laser based on ferroelectric liquid crystals. Appl. Phys. Lett. 82, 4026–4028 (2003).

    ADS  Google Scholar 

  33. Lin, T.-H. et al. Electrically controllable laser based on cholesteric liquid crystal with negative dielectric anisotropy. Appl. Phys. Lett. 88, 061122 (2006).

    ADS  Google Scholar 

  34. Woltman, S. J. & Crawford, G. P. Tunable cholesteric liquid crystals lasers through in-plane switching. Proc. SPIE 6487, 64870B (2007).

    ADS  Google Scholar 

  35. Yang, Y.-C. et al. Photonic defect modes of cholesteric liquid crystals. Phys. Rev. E. 60, 6852–6854 (1999).

    ADS  Google Scholar 

  36. Kopp, V. I. & Genack, A. Z. Twist defect in chiral photonic structures. Phys. Rev. Lett. 89, 033901 (2002).

    ADS  Google Scholar 

  37. Schmidtke, J. & Stille, W. Photonic defect modes in cholesteric liquid crystal films. Eur. Phys. J. E 12, 553–564 (2003).

    Google Scholar 

  38. Schmidtke, J., Stille, W. & Finkelmann, H. Defect mode emission of a dye doped cholesteric polymer network. Phys. Rev. Lett. 90, 083902 (2003).

    ADS  Google Scholar 

  39. Song, M. H. et al. Effect of phase retardation on defect-mode lasing in polymeric cholesteric liquid crystals. Adv. Mater. 16, 779–783 (2004).

    Google Scholar 

  40. Matsui, T., Ozaki, M. & Yoshino, K. Tunable photonic defect modes in a cholesteric liquid crystal induced by optical deformation of helix. Phys. Rev. E 69, 061715 (2004).

    ADS  Google Scholar 

  41. Kogelnik, H. & Shank, C. V. Coupled-wave theory of distributed feedback lasers. J. Appl. Phys. 43, 2327–2336 (1972).

    ADS  Google Scholar 

  42. Pershan, P. S. Structure of Liquid Crystal Phases (World Scientific, 1998).

    Google Scholar 

  43. Jen, S., Clark, N. A., Pershan, P. S. & Priestly, E. B. Polarized Raman scattering studies of orientational order in uniaxial liquid crystalline phases. J. Chem. Phys. 66, 4635–4661 (1977).

    ADS  Google Scholar 

  44. Dunmur, D. The Optics of Thermotropic Liquid Crystals (ed. Elston, S. & Sambles, J. R.) Ch. 2 (Taylor and Francis, 1998).

    Google Scholar 

  45. Collings, P. J. & Hird, M. Introduction to Liquid Crystals (Taylor and Francis, 1997).

    Google Scholar 

  46. Oswald, P. & Pieranski, P. Nematic and Cholesteric Liquid Crystals (Taylor and Francis, 2005).

    Google Scholar 

  47. Oswald, P. & Pieranski, P. Smectic and Columnar Liquid Crystals (Taylor and Francis, 2006).

    Google Scholar 

  48. Stegemeyer, H., Blumel, T. H., Hiltrop, K., Onusseit, H. & Porsch. F. Thermodynamic, structural and morphological studies on liquid-crystalline blue phases. Liq. Cryst. 1, 3–28 (1986).

    Google Scholar 

  49. Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nature Mater. 1, 64–68 (2002).

    ADS  Google Scholar 

  50. Coles, H. J. & Pivnenko, M. N. Liquid crystal 'blue phases' with a wide temperature range. Nature 436, 997–100 (2005).

    ADS  Google Scholar 

  51. de Vries, H. Rotatory power and other optical properties of certain liquid crystals. Acta. Cryst. 4, 219–226 (1951).

    Google Scholar 

  52. Belyakov, V. A., Dmitrienko, V. E. & Orlov, V. P. Optics of cholesteric liquid crystals. Sov. Phys. Uspekhi 22, 64–88 (1979).

    ADS  Google Scholar 

  53. Belyakov, V. A. & Dmitrienko, V. D. Theory of the optical properties of cholesteric liquid crystals. Sov. Phys. Sol. State 15, 1811–1815 (1974).

    Google Scholar 

  54. Muñoz, A., Palffy-Muhoray, P. & Taheri, B. Ultraviolet lasing in cholesteric liquid crystals. Opt. Lett. 26, 804–806 (2001).

    ADS  Google Scholar 

  55. Schmidtke, J. & Stille, W. Fluorescence of a dye-doped cholesteric liquid crystal film in the region of the stop band: theory and experiment. Eur. Phys. J. 31, 179–194 (2003).

    ADS  Google Scholar 

  56. Cao, W., Palffy-Muhoray, P., Taheri, B., Marino, A. & Ab, G. Lasing thresholds of cholesteric liquid crystals lasers. Mol. Cryst. Liq. Cryst. 429, 101–110 (2005).

    Google Scholar 

  57. Morris, S. M., Ford, A. D., Pivnenko, M. N. & Coles H. J. The effects of reorientation on the emission properties of a photonic band edge liquid crystal laser. J. Opt. A 7, 215–223 (2005).

    ADS  Google Scholar 

  58. Wang, Y. et al. Dependence of lasing threshold power on excitation wavelength in dye-doped cholesteric liquid crystals. Opt. Comm. 280, 408–411 (2007).

    ADS  Google Scholar 

  59. Woon, K. L., O'Neill, M., Richards, G. J., Aldred, M. P. & Kelly, S. M. Stokes parameter studies of spontaneous emission from chiral nematic liquid crystals as a one-dimensional photonic stopband crystal: Experiment and theory. Phys. Rev. E 71, 041706 (2005).

    ADS  Google Scholar 

  60. Huang, Y. et al. Incident angle and polarization effects on the dye-doped cholesteric liquid crystal laser. Opt. Comm. 261, 91–96 (2006).

    ADS  Google Scholar 

  61. Belyakov, V. A. Low threshold DFB lasing in chiral LC at diffraction of pumping wave. Mol. Cryst. Liq. Cryst. 453, 43–69 (2006).

    Google Scholar 

  62. Matsuhisa, Y. et al. Low-threshold and high efficiency lasing upon band-edge excitation in a cholesteric liquid crystal. Appl. Phys. Lett. 90, 091114 (2007).

    ADS  Google Scholar 

  63. Milner, V. & Genack, A. Z. Photon localization laser: Low-threshold lasing in a random amplifying layered medium via wave localization. Phys. Rev. Lett. 94, 073901 (2005).

    ADS  Google Scholar 

  64. Shirota, K., Sun, H.-B. & Kawata, S. Two-photon lasing of dye-doped photonic crystal lasers. Appl. Phys. Lett. 84, 1632–1634 (2004).

    ADS  Google Scholar 

  65. Chanishvili, A. et al. Laser emission from a dye-doped cholesteric liquid crystal pumped by another cholesteric liquid crystal laser. Appl. Phys. Lett. 85, 3378–3880 (2004).

    ADS  Google Scholar 

  66. J, R. et al. Electrically switchable lasing from pyrromethene 597 embedded holographic-polymer dispersed liquid crystal. Appl. Phys. Lett. 85, 6095–6097 (2004).

    ADS  Google Scholar 

  67. Wu, S.-T. & Fuh, A. Y.-G. Lasing in photonic crystals based on dye-doped holographic polymer-dispersed liquid crystal reflection gratings. Jpn. J. Appl. Phys. 44, 977–980 (2005).

    ADS  Google Scholar 

  68. Liu, Y. J. et al. Low-threshold and narrow-linewidth lasing from dye-doped holographic polymer-dispersed liquid crystal transmission gratings. Appl. Phys. Lett. 88, 061107 (2006).

    ADS  Google Scholar 

  69. Woltman, S. J. & Crawford G. P. Patterned liquid-crystal laser film for multi-dimensional multi-color emissive film technology. J. Soc. Inf. Disp. 15, 559–564 (2007).

    Google Scholar 

  70. Jakubiak, R., Tondiglia, V. P., Natarajan, L. V., Lloyd, P. F. & Sutherland, R. Lasing of pyrromethene 597 in 2D holographic polymer dispersed liquid crystals: influence of columnar conformation. Proc. SPIE 7232, 72320K (2009).

    ADS  Google Scholar 

  71. Blinov, L. M. et al. Electric field tuning a spectrum of nematic liquid crystal lasing with the use of a periodic shadow mask. J. Nonlinear Opt. Phys. 1, 75–90 (2007).

    Google Scholar 

  72. Blinov, L. M., Cipparrone, G., Pagliusi, P., Lazarev, V. V. & Palto, S. P. Simple voltage tunable liquid crystal laser. Appl. Phys. Lett. 90, 131103 (2007).

    ADS  Google Scholar 

  73. Blinov, L. M., Cipparrone, G., Pagliusi, P., Lazarev, V. V. & Palto, S. P. Mirrorless lasing from nematic liquid crystals in the plane waveguide geometry without refractive index or gain modulation. Appl. Phys. Lett. 89, 031114 (2006).

    ADS  Google Scholar 

  74. Kopp, V. I. & Genack, A. Z. Large coherence area thin-film stop-band lasers. Phys. Rev. Lett. 86, 1753–1756 (2001).

    ADS  Google Scholar 

  75. Lee, C.-R. et al. Color cone lasing emission in a dye-doped cholesteric liquid crystal with a single pitch. Opt. Express 17, 12910–12921 (2009).

    ADS  Google Scholar 

  76. Matsuhisa, Y., Ozaki, R., Takao, Y. & Ozaki, M. Linearly polarized lasing in one-dimensional hybrid photonic crystal containing cholesteric liquid crystal. J. Appl. Phys. 101, 033120 (2007).

    ADS  Google Scholar 

  77. Morris, S. M., Ford, A. D., Pivnenko, M. N., Hadeler, O. & Coles, H. J. Correlations between the performance characteristics of a liquid crystal laser and the macroscopic material properties. Phys. Rev. E 74, 061709 (2006).

    ADS  Google Scholar 

  78. Ford, A. D., Morris, S. M., Pivnenko, M. N., Gillespie, C. & Coles, H. J. Emission characteristics of a homologous series of bimesogenic liquid crystal lasers. Phys. Rev. E 76, 051703 (2007).

    ADS  Google Scholar 

  79. Chee, M. G., Song, M. H., Kim, D., Takezoe, H. & Chung, I. J. Lowering lasing threshold in chiral nematic liquid crystal structure with different anisotropies. Jpn. J. Appl. Phys. 46, L437–L439 (2007).

    ADS  Google Scholar 

  80. Araoka, F. et al. How doping a cholesteric liquid crystal with polymeric dye improves an order parameter and makes possible low threshold lasing. J. Appl. Phys. 94, 279–283 (2003).

    ADS  Google Scholar 

  81. Shin, K.-C. et al. Advantages of highly ordered polymer-dyes for lasing in chiral nematic liquid crystals. Jpn. J. Appl. Phys. 43, 631–636 (2004).

    ADS  Google Scholar 

  82. Dolgaleva, K. et al. Enhanced laser performance of cholesteric liquid crystals doped with oligofluorene dye. J. Opt. Soc. Am. B 25, 1496–1504 (2008).

    ADS  Google Scholar 

  83. Chinelatto, L. S. et al. Oligofluorene blue emitters for cholesteric liquid crystal lasers. J. Photochem. Photobio. A 210, 130–139 (2010).

    Google Scholar 

  84. Watanabe, Y. et al. Extremely low threshold in a pyrene-doped distributed feedback cholesteric liquid crystal laser. Appl. Phys. Express 2, 102501 (2009).

    ADS  Google Scholar 

  85. Mowatt, C. et al. Comparison of the performance of photonic band-edge liquid crystal lasers using different dyes as the gain medium. J. Appl. Phys. 107, 043101 (2010).

    ADS  Google Scholar 

  86. Coles, H. J., Morris, S. M., Hands, P. J. W., Choi, S. S. & Wilkinson, T. D. Red-green-blue tuneable liquid crystal laser devices. Proc. SPIE 7414, 741402 (2009).

    Google Scholar 

  87. Huang, Y., Lin, T.-H., Zhou, Y. & Wu, S.-T. Enhancing the laser power by stacking multiple dye-doped chiral polymer films. Opt. Express 14, 11299–11303 (2006).

    ADS  Google Scholar 

  88. Amemiya, K. et al. Lowering the lasing threshold by introducing cholesteric liquid crystal films to dye-doped cholesteric liquid crystal cell surfaces. Jpn. J. Appl. Phys. 44, 7966–7971 (2005).

    ADS  Google Scholar 

  89. Zhou, Y., Huang, Y., Rapaport, A., Bass, M. & Wu, S.-T. Doubling the optical efficiency of a chiral liquid crystal laser using a reflector. Appl. Phys. Lett. 87, 231107 (2005).

    ADS  Google Scholar 

  90. Blinov, L. M., Cipparrone, G., Lazarev, V. V. & Umanskii, B. A. Planar amplifier for a microlaser on a cholesteric liquid crystal. Appl. Phys. Lett. 91, 061102 (2007).

    ADS  Google Scholar 

  91. Shtykov, N. M., Barnik, M. I., Blinov, L. M., Umanski, B. A. & Palto, S. P. Amplification of the lasing of a liquid-crystal microlaser by means of a uniform liquid-crystal layer. JETP Lett. 85, 602–604 (2007).

    ADS  Google Scholar 

  92. Blinov, L. M., Cipparrone, G., Mazzulla, A., Pagliusi, P. & Lazarev, V. V. Lasing in cholesteric liquid crystal cells: Competition of Bragg and leaky modes. J. Appl. Phys. 101, 053104 (2007).

    ADS  Google Scholar 

  93. Blinov, L. M. et al. Quasi-in-plane leaky modes in lasing cholesteric liquid crystal cells. J. Appl Phys. 104, 103115 (2008).

    ADS  Google Scholar 

  94. Strangi, G. et al. Color-tunable organic microcavity laser array using distributed feedback. Phys. Rev. Lett. 94, 063903 (2005).

    ADS  Google Scholar 

  95. Hands, P. J. W., Morris, S. M., Wilkinson, T. D. & Coles, H. J. Two-dimensional liquid crystal laser array. Opt. Lett. 33, 515–517 (2008).

    ADS  Google Scholar 

  96. Morris, S. M. et al. Polychromatic liquid crystal laser arrays towards display applications. Opt. Express 16, 18827–18837 (2008).

    ADS  Google Scholar 

  97. Becchi, M., Ponti, S., Reyes, J. A. & Oldano, C. Defect modes in helical photonic crystals: An analytical approach. Phys. Rev. B 70, 033103 (2004).

    ADS  Google Scholar 

  98. Jeong, S. M. et al. Defect mode lasing from a double-layered dye-doped polymeric cholesteric liquid crystal films with a thin rubbed defect layer. Appl. Phys. Lett. 90, 261108 (2007).

    ADS  Google Scholar 

  99. Song, M. H. et al. Lasing from thick anisotropic layer sandwiched between polymeric cholesteric liquid crystal films. Jpn. J. Appl. Phys. 44, 8165–8167 (2005).

    ADS  Google Scholar 

  100. Song, M. H. et al. Defect-mode lasing with lowered threshold in a three-layered hetero-cholesteric liquid-crystal structure. Adv. Mater. 18, 193–197 (2006).

    Google Scholar 

  101. Song, M.-H. et al. Electrotunable non reciprocal laser emission from a liquid-crystal photonic device. Adv. Funct. Mater. 16, 1793–1798 (2006).

    Google Scholar 

  102. Takanishi, Y. et al. Defect-mode lasing from a three-layered helical cholesteric liquid crystal structure. Jpn. J. Appl. Phys. 46, 3510–3513 (2007).

    ADS  Google Scholar 

  103. Belyakov, V. A. Low threshold DFB lasing at the edge and defect modes in chiral liquid crystals. Mol. Cryst. Liq. Cryst. 488, 279–308 (2008).

    Google Scholar 

  104. Ha, N. Y., Takanishi, Y., Ishikawa, K. & Takezoe, H. Simultaneous RGB reflections from single-pitched cholesteric liquid crystal films with Fibonaccian defects. Opt. Express 15, 1024–1029 (2007).

    ADS  Google Scholar 

  105. Ha, N. Y. et al. Fabrication of a simultaneous red-green-blue reflector using single-pitched cholesteric liquid crystals. Nature Mater. 7, 43–47 (2008).

    ADS  Google Scholar 

  106. Morris, S. M., Ford, A. D. & Coles, H. J. Removing the discontinuous shift in emission wavelength of a chiral nematic liquid crystal laser. J. Appl. Phys. 106, 023112 (2009).

    ADS  Google Scholar 

  107. Chanishvili, A. et al. Widely tunable ultraviolet-visible liquid crystal laser. Appl. Phys. Lett. 86, 051107 (2005).

    ADS  Google Scholar 

  108. Lin, T.-H. et al. Cholesteric liquid crystal laser with wide tuning capability. Appl. Phys. Lett. 86, 161120 (2005).

    ADS  Google Scholar 

  109. Huang, Y., Zhou, Y. & Wu, S.-T. Spatially tunable laser emission in dye-doped photonic liquid crystals. Appl. Phys. Lett. 88, 011107 (2006).

    ADS  Google Scholar 

  110. Huang, Y., Chen, L.-P., Doyle, C., Zhou, Y. & Wu, S.-T. Spatially tunable laser emission in dye-doped cholesteric polymer films. Appl. Phys. Lett. 89, 111106 (2006).

    ADS  Google Scholar 

  111. Sonoyama, K., Takanishi, Y., Ishikawa, K. & Takezoe, H. Position-sensitive cholesteric liquid crystal dye laser covering a full visible range. Jpn. J. Appl. Phys. 46, L874–L876 (2007).

    ADS  Google Scholar 

  112. Jeong, M.-Y., Choi, H. & Wu, J. W. Spatial tuning of laser emission in a dye-doped cholesteric liquid crystal wedge cell. Appl. Phys. Lett. 92, 051108 (2008).

    ADS  Google Scholar 

  113. Wang, C.-T. & Lin, T.-H. Multi-wavelength laser emission in dye-doped photonic liquid crystals. Opt. Express 16, 18334–18339 (2008).

    ADS  Google Scholar 

  114. Yoshida, H. et al. Position sensitive, continuous wavelength tunable laser based on photopolymerizable cholesteric liquid crystals with an in-plane helix alignment. Appl. Phys. Lett. 94, 093306 (2009).

    ADS  Google Scholar 

  115. Chambers, M., Fox, M., Grell, M. & Hill, J. Lasing from a Förster transfer fluorescent dye couple dissolved in a chiral nematic liquid crystal. Adv. Funct. Mater. 12, 808–810 (2002).

    Google Scholar 

  116. Sonoyama, K., Takanishi, Y., Ishikawa, K. & Takezoe, H. Lowering threshold by energy transfer between two dyes in cholesteric liquid crystal distributed feedback lasers. Appl. Phys. Express 1, 032002 (2008).

    ADS  Google Scholar 

  117. Fuh, A. Y.-G. & Lin, T.-H. Lasing in chiral photonic liquid crystals and associated frequency tuning. Opt. Express 12, 1857–1863 (2004).

    ADS  Google Scholar 

  118. Chanishvili, A. et al. Lasing in dye-doped cholesteric liquid crystals: Two new tuning strategies. Adv. Mater. 16, 791–795 (2004).

    Google Scholar 

  119. Barnik, M. I. et al. Lasing from photonic structure: Cholesteric-voltage controlled nematic cholesteric liquid crystal. J. Appl. Phys. 103, 123113 (2008).

    ADS  Google Scholar 

  120. Blinov, L. M. & Bartelino, R. (eds) Liquid Crystal Microlaser (Transworld Research Network, 2010).

    Google Scholar 

  121. Ford, A. D., Morris, S. M. & Coles, H. J. Photonics and lasing in liquid crystals. Mater. Today 9, 36–42 (July–August, 2006).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harry Coles.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Coles, H., Morris, S. Liquid-crystal lasers. Nature Photon 4, 676–685 (2010). https://doi.org/10.1038/nphoton.2010.184

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2010.184

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing