Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optical cleaning of congruent lithium niobate crystals

Abstract

Lithium niobate (LiNbO3), also called the ‘silicon of photonics’, is indispensable in advanced photonics and nonlinear optics1,2,3,4,5,6,7,8,9,10. For many applications, however, the material is too polluted by transition metals, which are unavoidable at the parts per million level. These impurities serve as sources and traps for photoelectrons, causing optical damage and hampering the usability of LiNbO3. Efforts have therefore been made to get rid of the photoexcitable electrons11,12. Here we introduce a method termed ‘optical cleaning’. We show theoretically and experimentally that, if the material is heated to moderate temperatures, allowing ions to migrate and to maintain charge neutrality, an appropriately moving light beam pushes photoexcitable electrons out of the illuminated region like a brush, and provides exponential cleaning. This promises purification levels that are beyond the reach of current technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of optical cleaning.
Figure 2: Optical cleaning with a static light beam.
Figure 3: Optical cleaning with a moving light beam.
Figure 4: Concentration profiles showing experimental and simulated results.
Figure 5: Evidence for optical damage suppression.

Similar content being viewed by others

References

  1. Dunn, M. H. & Ebrahimzadeh, M. Parametric generation of tunable light from continuous-wave to femtosecond pulses. Science 286, 1513–1517 (1999).

    Article  Google Scholar 

  2. Canalias, C. & Pasiskevicius, V. Mirrorless optical parametric oscillator. Nature Photon. 1, 459–462 (2007).

    Article  ADS  Google Scholar 

  3. Ilchenko, V. S., Savchenkov, A. A., Matsko, A. B. & Maleki, L. Nonlinear optics and crystalline whispering gallery mode cavities. Phys. Rev. Lett. 92, 043903 (2004).

    Article  ADS  Google Scholar 

  4. Guarino, A., Poberaj, G., Rezzonico, D., Degl'Innocenti, R. & Günter, P. Electro-optically tunable microring resonators in lithium niobate. Nature Photon. 1, 407–410 (2007).

    Article  ADS  Google Scholar 

  5. Hsu, R. C. J., Ayazi, A., Houshmand, B. & Jalali, B. All-dielectric photonic-assisted radio front-end technology. Nature Photon. 1, 535–538 (2007).

    Article  ADS  Google Scholar 

  6. Zhu, S., Zhu, Y. & Ming, N. Quasi-phase-matched third-harmonic generation in a quasi-periodic optical superlattice. Science 278, 843–846 (1997).

    Article  ADS  Google Scholar 

  7. Broderick, N. G. R., Ross, G. W., Offerhaus, H. L., Richardson, D. J. & Hanna, D. C. Hexagonally poled lithium niobate: a two-dimensional nonlinear photonic crystal. Phys. Rev. Lett. 84, 4345–4348 (2000).

    Article  ADS  Google Scholar 

  8. Soljacic, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  9. Yang, W., Kazansky, P. G. & Svirko, Y. P. Non-reciprocal ultrafast laser writing. Nature Photon. 2, 99–104 (2008).

    Article  ADS  Google Scholar 

  10. Buse, K., Adibi, A. & Psaltis, D. Non-volatile holographic storage in doubly doped lithium niobate crystals. Nature 393, 665–668 (1998).

    Article  ADS  Google Scholar 

  11. Falk, M. & Buse, K. Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals. Appl. Phys. B 81, 853–855 (2005).

    Article  ADS  Google Scholar 

  12. Gronenborn, S., Sturman, B., Falk, M., Haertle, D. & Buse, K. Ultraslow shock waves of electron density in LiNbO3 crystals. Phys. Rev. Lett. 101, 116601 (2008).

    Article  ADS  Google Scholar 

  13. Kuz'minov, Y. S. Lithium Niobate Crystals (Cambridge Univ. Press, 1999).

    Google Scholar 

  14. Myers, L. E., Eckardt, R. C., Fejer, M. M. & Byer, R. L. Quasi-phase-matched optical parametric oscillators in bulk periodically poled LiNbO3 . J. Opt. Soc. Am. A 12, 2102–2116 (1995).

    Article  ADS  Google Scholar 

  15. Solymar, L., Webb, D. & Grunnet-Jepsen, A. The Physics and Applications of Photorefractive Materials (Clarendon Press, 1996).

    Google Scholar 

  16. Photorefractive Materials and Their Applications I, II (eds Günter, P. & Huignard, J.-P. ) (Springer, 2006, 2007).

  17. Glass, A. M., von der Linde, D. & Negran, T. J. High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3 . Appl. Phys. Lett. 25, 233–235 (1974).

    Article  ADS  Google Scholar 

  18. Fridkin, V. & Sturman, B. The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon & Breach, 1992).

    Google Scholar 

  19. Maleki, L. & Matsko, A. Ferroelectric crystals for photonic applications, 337–383 (Springer, 2008).

    Google Scholar 

  20. Schirmer, O. F., Imlau, M., Merschjann, C. & Schoke, B. Topical review: electron small polarons and bipolarons in LiNbO3 . J. Phys.: Condens. Matter 21, 123201 (2009).

    ADS  Google Scholar 

  21. Jermann, F. & Otten, J. Light-induced charge transport in LiNbO3:Fe at high light intensities. J. Opt. Soc. Am. B 10, 2085–2092 (1993).

    Article  ADS  Google Scholar 

  22. Yan, W. B. et al. Influence of composition on the photorefractive centers in pure LiNbO3 at low light intensity. Appl. Opt. 45, 2453–2458 (2006).

    Article  ADS  Google Scholar 

  23. Becker, R. A. ‘Thermal fixing’ of Ti-indiffused LiNbO3 channel waveguides for reduced photorefractive susceptibility. Appl. Phys. Lett. 45, 121–123 (1984).

    Article  ADS  Google Scholar 

  24. Sturman, B. I., Carrascosa, M., Agulló-López, F. & Limeres, J. Two kinetic regimes for high-temperature photorefractive phenomena in LiNbO3 . J. Opt. Soc. Am. B 15, 148–151 (1998).

    Article  ADS  Google Scholar 

  25. Jeffrey, A. Handbook of Mathematical Formulas and Integrals (Academic Press, 2004).

    MATH  Google Scholar 

  26. Whitham, G. B. Linear and Nonlinear Waves (Wiley-Interscience, 1974).

    MATH  Google Scholar 

  27. Jermann, F., Simon, M. & Krätzig, E. Photorefractive properties of congruent and stoichiometric lithium niobate at high light intensities. J. Opt. Soc. Am. B 12, 2066–2070 (1995).

    Article  ADS  Google Scholar 

  28. Kurz, H. et al. Photorefractive centers in LiNbO3, studied by optical-, Mössbauer- and EPR-methods. Appl. Phys. 12, 355–368 (1977).

    Article  ADS  Google Scholar 

  29. Klauer, S., Wöhlecke, M. & Kapphan, S. Influence of H-D isotopic substitution on the protonic conductivity of LiNbO3 . Phys. Rev. B 45, 2786–2799 (1992).

    Article  ADS  Google Scholar 

  30. Rams, J., Alcázar-de-Velasco, A., Carrascosa, M., Cabrera, J. M. & Agulló-López, F. Optical damage inhibition and thresholding effects in lithium niobate above room temperature. Opt. Commun. 178, 211–216 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Falk for useful discussions, and the Deutsche Forschungsgemeinschaft (Research Unit 557) and the Deutsche Telekom AG for financial support.

Author information

Authors and Affiliations

Authors

Contributions

The project was planned by K.B., M.K. and D.H. The experiments were performed by M.K. and P.W. Data were analysed by B.S., M.K., P.W., D.H. and K.B.

Corresponding author

Correspondence to K. Buse.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kösters, M., Sturman, B., Werheit, P. et al. Optical cleaning of congruent lithium niobate crystals. Nature Photon 3, 510–513 (2009). https://doi.org/10.1038/nphoton.2009.142

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.142

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing