Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Phase shaping of single-photon wave packets

Abstract

Although the phase of a coherent light field can be precisely known, this is not true for the phase of the individual photons that create the field, considered individually1. Phase changes within single-photon wave packets, however, have observable effects. In fact, actively controlling the phase of individual photons has been identified as a powerful resource for quantum communication protocols2,3. Here we demonstrate arbitrary phase control of a single photon. The phase modulation is applied without affecting the photon's amplitude profile and is verified by means of a two-photon quantum interference measurement4,5, demonstrating fermionic spatial behaviour of photon pairs. Combined with previously demonstrated control of a single photon's amplitude6,7,8,9,10, frequency11, and polarization12, the fully deterministic phase shaping presented here allows for the complete control of single-photon wave packets.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental apparatus.
Figure 2: Photon pair coincidences.
Figure 3: Coincidence rate versus applied phase shift.
Figure 4: Linear phase ramp.

Similar content being viewed by others

References

  1. Carruthers, P. & Nieto, M. M. ‘Phase and angle variables in quantum mechanics. Rev. Mod. Phys. 40, 411–440 (1968).

    Article  ADS  Google Scholar 

  2. Tittel, W., Brendel, J., Zbinden, H. & Gisin, N. Quantum cryptography using entangled photons in energy–time Bell states. Phys. Rev. Lett. 84, 4737–4740 (2000).

    Article  ADS  Google Scholar 

  3. Inoue, K., Waks, E. & Yamamoto, Y. Differential phase shift quantum key distribution. Phys. Rev. Lett. 89, 037902 (2002).

    Article  ADS  Google Scholar 

  4. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044–2046 (1987).

    Article  ADS  Google Scholar 

  5. Shih, Y. H. & Alley, C. O. New type of Einstein–Podolsky–Rosen–Bohm experiment using pairs of light quanta produced by optical parametric down conversion. Phys. Rev. Lett. 61, 2921–2924 (1988).

    Article  ADS  Google Scholar 

  6. Kuhn, A., Hennrich, M. & Rempe, G. Deterministic single-photon source for distributed quantum networking. Phys. Rev. Lett. 89, 067901 (2002).

    Article  ADS  Google Scholar 

  7. Keller, M., Lange, B., Hayasaka, K., Lange, W. & Walther, H. Continuous generation of single photons with controlled waveform in an ion-trap cavity system. Nature 431, 1075–1078 (2004).

    Article  ADS  Google Scholar 

  8. McKeever, J. et al. Deterministic generation of single photons from one atom trapped in a cavity. Science 303, 1992–1994 (2004).

    Article  ADS  Google Scholar 

  9. Bochmann, J. et al. Fast excitation and photon emission of a single-atom-cavity system. Phys. Rev. Lett. 101, 223601 (2008).

    Article  ADS  Google Scholar 

  10. Kolchin, P., Belthangady, C., Du, S., Yin, G. Y. & Harris, S. E. Electro-optic modulation of single photons. Phys. Rev. Lett. 101, 103601 (2008).

    Article  ADS  Google Scholar 

  11. Legero, T., Wilk, T., Hennrich, M., Rempe, G. & Kuhn, A. Quantum beat of two single photons. Phys. Rev. Lett. 93, 070503 (2004).

    Article  ADS  Google Scholar 

  12. Wilk, T., Webster, S. C., Specht, H. P., Rempe, G. & Kuhn, A. Polarization-controlled single photons. Phys. Rev. Lett. 98, 063601 (2007).

    Article  ADS  Google Scholar 

  13. Legero, T., Wilk, T., Kuhn, A. & Rempe, G. Characterization of single photons using two-photon interference. Adv. At. Mol. Opt. Phys. 53, 253–289 (2006).

    Article  ADS  Google Scholar 

  14. Rohde, P. P., Ralph, T. C. & Nielsen, M. A. Optimal photons for quantum-information processing. Phys. Rev. A 72, 052332 (2005).

    Article  ADS  Google Scholar 

  15. Santori, C., Fattal, D., Vuĉković, J., Solomon, G. & Yamamoto, Y. Indistinguishable photons from a single-photon device. Nature 419, 594–597 (2002).

    Article  ADS  Google Scholar 

  16. Kwiat, P. G., Steinberg, A. M. & Chiao, R. Y. Observation of a ‘quantum eraser’: A revival of coherence in a two-photon interference experiment. Phys. Rev. A 45, 7729–7739 (1992).

    Article  ADS  Google Scholar 

  17. Metz, J. & Barrett, S. D. Effect of frequency-mismatched photons in quantum-information processing. Phys. Rev. A 77, 042323 (2008).

    Article  ADS  Google Scholar 

  18. Marcikic, I. et al. Time-bin entangled qubits for quantum communication created by femtosecond pulses. Phys. Rev. A 66, 062308 (2002).

    Article  ADS  Google Scholar 

  19. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  20. Wang, K. Quantum theory of two-photon wavepacket interference in a beamsplitter. J. Phys. B: At. Mol. Opt. Phys. 39, R293–R324 (2006).

    Article  ADS  Google Scholar 

  21. Hennrich, M., Legero, T., Kuhn, A. & Rempe, G. Vacuum-stimulated Raman scattering based on adiabatic passage in a high-finesse optical cavity. Phys. Rev. Lett. 85, 4872–4875 (2000).

    Article  ADS  Google Scholar 

  22. Hijlkema, M. et al. A single-photon server with just one atom. Nature Phys. 3, 253–255 (2007).

    Article  ADS  Google Scholar 

  23. Maunz, P. et al. Quantum interference of photon pairs from two remote trapped atomic ions. Nature Phys. 3, 538–541 (2007).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank S. Ritter for useful discussions on the manuscript. This work was partially supported by the Deutsche Forschungsgemeinschaft (Research Unit 635, Cluster of Excellence MAP) and the European Union (IST project SCALA). D.L.M. and E.F. acknowledge support from the Alexander von Humboldt Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. L. Moehring.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Specht, H., Bochmann, J., Mücke, M. et al. Phase shaping of single-photon wave packets. Nature Photon 3, 469–472 (2009). https://doi.org/10.1038/nphoton.2009.115

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing