Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

All-optical high-speed signal processing with silicon–organic hybrid slot waveguides

Abstract

Integrated optical circuits based on silicon-on-insulator technology are likely to become the mainstay of the photonics industry. Over recent years an impressive range of silicon-on-insulator devices has been realized, including waveguides1,2, filters3,4 and photonic-crystal devices5. However, silicon-based all-optical switching is still challenging owing to the slow dynamics of two-photon generated free carriers. Here we show that silicon–organic hybrid integration overcomes such intrinsic limitations by combining the best of two worlds, using mature CMOS processing to fabricate the waveguide, and molecular beam deposition to cover it with organic molecules that efficiently mediate all-optical interaction without introducing significant absorption. We fabricate a 4-mm-long silicon–organic hybrid waveguide with a record nonlinearity coefficient of γ ≈ 1 × 105 W−1 km−1 and perform all-optical demultiplexing of 170.8 Gb s−1 to 42.7 Gb s−1. This is—to the best of our knowledge—the fastest silicon photonic optical signal processing demonstrated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Structure and organic molecule of a silicon–organic hybrid slot waveguide.
Figure 2: Scanning electron microscope (SEM) image of the SOH waveguide and nonlinear waveguide dynamics.
Figure 3: Experimental set-up of the all-optical demultiplexing by four-wave mixing.

Similar content being viewed by others

References

  1. Tsuchizawa, T. et al. Microphotonics devices based on silicon microfabrication technology. IEEE J. Sel. Top. Quantum Electron. 11, 232–240 (2005).

    Article  ADS  Google Scholar 

  2. Lipson, M. Guiding, modulating, and emitting light on silicon—challenges and opportunities. J. Lightwave Technol. 23, 4222–4238 (2005).

    Article  ADS  Google Scholar 

  3. Popović, M. A. et al. Hitless-reconfigurable and bandwidth-scalable silicon photonic circuits for telecom and interconnect applications. Optical Fiber Communincation Conference (OFC'08), paper OTuF4 (OSA, 2008).

  4. Bogaerts, W. et al. Compact wavelength-selective functions in silicon-on-insulator photonic wires. IEEE J. Sel. Top. Quantum Electron. 12, 1394–1401 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  5. Vlasov, Y. A., O'Bolye, M., Hamann, H. F. & McNab, S. J. Active control of slow light on a chip with photonic crystal waveguides. Nature 438, 65–69 (2005).

    Article  ADS  Google Scholar 

  6. Rong, H. et al. Low-threshold continuous-wave Raman silicon laser. Nature Photon. 1, 232–237 (2007).

    Article  ADS  Google Scholar 

  7. Espinola, R. L. et al. Raman amplification in ultrasmall silicon-on-insulator wire waveguides. Opt. Express 12, 3713–3718 (2004).

    Article  ADS  Google Scholar 

  8. Park, H. et al. A hybrid AlGaInAs–silicon evanescent amplifier. IEEE Photon. Technol. Lett. 19, 230–232 (2007).

    Article  ADS  Google Scholar 

  9. Fang, A. W. et al. Electrically pumped hybrid AlGaInAs–silicon evanescent laser. Opt. Express 14, 9203–9210 (2006).

    Article  ADS  Google Scholar 

  10. Van Thourhout, D. et al. A photonic interconnect layer on CMOS. European Conference on Optical Communications (ECOC'07), paper 6.3.1 (2007).

  11. Koch, B. R., Fang, A. W., Cohen, O. & Bowers, J. E. Mode-locked silicon evanescent lasers. Opt. Express 15, 11225–11233 (2007).

    Article  ADS  Google Scholar 

  12. Park, H. et al. A hybrid AlGaInAs–silicon evanescent waveguide photodetector. Opt. Express 15, 6044–6052 (2007).

    Article  ADS  Google Scholar 

  13. Liao, L. et al. 40 Gbit/s silicon optical modulator for high-speed applications. Electron. Lett. 43, 1196–1197 (2007).

    Article  Google Scholar 

  14. Salem, R. et al. Signal regeneration using low-power four-wave mixing on silicon chip. Nature Photon. 2, 35–38 (2008).

    Article  ADS  Google Scholar 

  15. Kuo, Y.-H. et al. Demonstration of wavelength conversion at 40 Gb/s data rate in silicon waveguides. Opt. Express 14, 11721–11726 (2006).

    Article  ADS  Google Scholar 

  16. Hochberg, M. et al. Terahertz all-optical modulation in a silicon-polymer hybrid system. Nature Mater. 5, 703–709 (2006).

    Article  ADS  Google Scholar 

  17. Koos, C., Jacome, L., Poulton, C., Leuthold, J. & Freude, W. Nonlinear silicon-on-insulator waveguides for all-optical signal processing. Opt. Express 15, 5976–5990 (2007).

    Article  ADS  Google Scholar 

  18. Baehr-Jones, T. W., et al. Optical modulation and detection in slotted silicon waveguides. Opt. Express 13, 5216–5226 (2005).

    Article  ADS  Google Scholar 

  19. Hochberg, M. et al. Towards a millivolt optical modulator with nano-slot waveguides. Opt. Express, 15, 8401–8410 (2007).

    Article  ADS  Google Scholar 

  20. Brosi, J.-M. et al. High-speed low-voltage electro-optic modulator with a polymer-infiltrated silicon photonic crystal waveguide. Opt. Express 16, 4177–4191 (2008).

    Article  ADS  Google Scholar 

  21. Baehr-Jones, T. W. and Hochberg, M. J. Polymer silicon hybrid systems: A platform for practical nonlinear optics. J. Phys. Chem. C 112, 8085–8090 (2008).

    Article  Google Scholar 

  22. Almeida, V. R., Xu, Q., Barrios, C. A. & Lipson, M. Guiding and confining light in void nanostructure. Opt. Lett. 29, 1209–1211 (2004).

    Article  ADS  Google Scholar 

  23. Esembeson, B. et al. A high optical quality supramolecular assembly for third-order integrated nonlinear optics. Adv. Mater. 20, 4584–4587 (2008).

    Article  Google Scholar 

  24. Michinobu, T. et al. A new class of organic donor–acceptor molecules with large third-order optical nonlinearities. Chem. Commun. 737–739 (2005).

  25. May, J. C., Biaggio, I., Bures, F. & Diederich, F. Extended conjugation and donor–acceptor substitution to improve the third-order optical nonlinearity of small molecules. Appl. Phys. Lett. 90, 251106 (2007).

    Article  ADS  Google Scholar 

  26. Koos, C. et al. Highly-nonlinear silicon photonics slot waveguide. Optical Fiber Communications Conference (OFC'08), postdeadline paper PDP25 (2008).

  27. Leong, J. Y. Y. et al. A lead silicate holey fiber with γ = 1860 W−1 km−1 at 1550 nm. Optical Fiber Communications Conference (OFC'05), postdeadline paper PDP22 (2005).

  28. Mägi, E. C. et al. Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3 chalcogenide fiber tapers. Opt. Express 15, 10324–10329 (2007).

    Article  ADS  Google Scholar 

  29. Vallaitis, T. et al. Slow and fast dynamics of gain and phase in a quantum dot semiconductor optical amplifier. Opt. Express 16, 170–178 (2008).

    Article  ADS  Google Scholar 

  30. Vallaitis, T. et al. Highly nonlinear silicon photonic slot waveguides without free carrier absorption related speed-limitations. Proc. 34rd European Conference on Optical Communication (ECOC'08), paper Th.2.D.6 (2008).

Download references

Acknowledgements

This work was supported in part by the DFG (German Research Foundation) Center for Functional Nanostructures (CFN), by the Initiative of Excellence of the University of Karlsruhe within a Feasibility Study of Young Scientists (FYS), the Karlsruhe School of Optics, and by the European project TRIUMPH (Transparent Ring Interconnection Using Multi-wavelength PHotonic switches, grant IST-027638 STP). We acknowledge support by the European Network of Excellence ePIXnet, including fabrication by ePIXfab (www.epixfab.eu), and by ASML Netherlands B.V., and we acknowledge equipment loan from Siemens Portugal and from Optoelectronics Research Centre (ORC) in Southampton, UK. I.B. and B.E. acknowledge partial support from the Commonwealth of Pennsylvania, Ben Franklin Technology Development Authority. F.D. and T.M. acknowledge support from the ETH research council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to W. Freude or J. Leuthold.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koos, C., Vorreau, P., Vallaitis, T. et al. All-optical high-speed signal processing with silicon–organic hybrid slot waveguides. Nature Photon 3, 216–219 (2009). https://doi.org/10.1038/nphoton.2009.25

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.25

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing