Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Observation of optical-fibre Kerr nonlinearity at the single-photon level

Abstract

Optical fibres have proved to be an important medium for manipulating and generating light in applications including soliton transmission1, light amplification2, all-optical switching3 and supercontinuum generation4. In the quantum regime, fibres may prove useful for ultralow-power all-optical signal processing5 and quantum information processing6. Here, we demonstrate the first experimental observation of optical nonlinearity at the single-photon level in an optical fibre. Taking advantage of the large nonlinearity and managed dispersion of photonic crystal fibres7,8, we report very small (1 × 10−7 to 1 × 10−8 rad) conditional phase shifts induced by weak coherent pulses that contain one or less than one photon per pulse on average. We discuss the feasibility of quantum information processing using optical fibres, taking into account the observed Kerr nonlinearity, accompanied by ultrafast response time and low induced loss.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental set-up.
Figure 2: Nonlinear phase shifts as a function of mean photon number per pump pulse.
Figure 3: Probe power dependence of the measured phase shift and phase noise.
Figure 4: Normalized probe phase shifts as a function of the time delay between pump and probe pulses.

Similar content being viewed by others

References

  1. Mollenauer, L. F., Stolen, R. H. & Gordon, J. P. Experimental observation of picosecond pulse narrowing and solitons in optical fibers. Phys. Rev. Lett. 45, 1095–1098 (1980).

    Article  ADS  Google Scholar 

  2. Nakazawa, M., Kimura, Y. & Suzuki, K. Efficient Er3+-doped optical fiber amplifier pumped by a 1.48 µm InGaAsP laser diode. Appl. Phys. Lett. 54, 295–297 (1989).

    Article  ADS  Google Scholar 

  3. Asobe, M., Kanamori, T. & Kubodera, K. Ultrafast all-optical switching using highly nonlinear chalcogenide glass fiber. IEEE Photon. Technol. Lett. 4, 362–365 (1992).

    Article  ADS  Google Scholar 

  4. Ranka, J. K., Windeler, R. S. & Stentz, A. J. Visible continuum generation in air–silica microstructure optical fibers with anomalous dispersion at 800 nm. Opt. Lett. 25, 25–27 (2000).

    Article  ADS  Google Scholar 

  5. Hu, X., Jiang, P., Ding, C., Yang. H. & Gong, Q. Picosecond and low-power all-optical switching based on an organic photonic-bandgap microcavity. Nature Photon. 2, 185–189 (2008).

    Article  ADS  Google Scholar 

  6. Milburn, G. J. Quantum optical Fredkin gate. Phys. Rev. Lett. 62, 2124–2127 (1989).

    Article  ADS  Google Scholar 

  7. Knight, J. C., Birks, T. A., Russell, P. S. J. & Atkin, D. M. All-silica single-mode optical fiber with photonic crystal cladding. Opt. Lett. 21, 1547–1549 (1996).

    Article  ADS  Google Scholar 

  8. Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    Article  ADS  Google Scholar 

  9. Fushman, I. et al. Controlled phase shifts with a single quantum dot. Science 320, 769–772 (2008).

    Article  ADS  Google Scholar 

  10. Turchette, Q. A., Hood, C. J., Lange, W., Mabuchi, H. & Kimble, H. J. Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710–4713 (1995).

    Article  ADS  MathSciNet  Google Scholar 

  11. Munro, W. J., Nemoto, K. & Spiller, T. P. Weak nonlinearities: a new route to optical quantum computation. New J. Phys. 7, 137 (2005).

    Article  ADS  Google Scholar 

  12. Spiller, T. P. et al. Quantum computation by communication. New J. Phys. 8, 30 (2006).

    Article  ADS  Google Scholar 

  13. Shapiro, J. H. & Razavi, M. Continuous-time cross-phase modulation and quantum computation. New J. Phys. 9, 16 (2007).

    Article  ADS  Google Scholar 

  14. Fulconis, J., Alibart, O., O'Brien, J. L., Wadsworth, W. J. & Rarity, J. G. Nonclassical interference and entanglement generation using a photonic crystal fiber pair photon source. Phys. Rev. Lett. 99, 120501 (2007).

    Article  ADS  Google Scholar 

  15. Hirosawa, K. et al. Photon number squeezing of ultrabroadband laser pulses generated by microstructure fibers. Phys. Rev. Lett. 94, 203601 (2005).

    Article  ADS  Google Scholar 

  16. Philbin, T. G. et al. Fiber-optical analog of the event horizon. Science 319, 1367–1370 (2008).

    Article  ADS  Google Scholar 

  17. Sagnac, M. G. L'éther lumineux démontre par l'effet du vent relatif d'éther dans un interférométre en rotation uniforme. C. R. Acad. Sci. 157, 708–719 (1913).

    Google Scholar 

  18. Hwang, J., Fejer, M. M. & Moerner, W. E. Scanning interferometric microscopy for the detection of ultrasmall phase shifts in condensed matter. Phys. Rev. A 73, 021802(R) (2006).

    Article  ADS  Google Scholar 

  19. Sun, K.-X., Fejer, M. M., Gustafson, E. & Byer, R. L. Sagnac interferometer for gravitational-wave detection. Phys. Lev. Lett. 76, 3053–3056 (1996).

    Article  ADS  Google Scholar 

  20. Matsuda, N., Shimizu, R., Mitsumori, Y., Kosaka, H. & Edamatsu, K. Lossless all-optical phase gate using a polarization-division Sagnac interferometer applicable to a waveguide-type Kerr medium. Appl. Phys. Lett. 91, 171119 (2007).

    Article  ADS  Google Scholar 

  21. Baumberg, J. J. et al. Ultrafast Faraday spectroscopy in magnetic semiconductor quantum structures. Phys. Rev. B 50, 7689–7700 (1994).

    Article  ADS  Google Scholar 

  22. Fox, A. M., Baumberg, J. J., Dabbicco, M., Huttner, B. & Ryan, J. F. Squeezed light generation in semiconductors. Phys. Rev. Lett. 74, 1728–1731 (1995).

    Article  ADS  Google Scholar 

  23. Kitagawa, M. & Yamamoto, Y. Number-phase minimum-uncertainty state with reduced number uncertainty in a Kerr nonlinear interferometer. Phys. Rev. A 34, 3974–3988 (1986).

    Article  ADS  Google Scholar 

  24. Kim, D. & Kang, J. Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity. Opt. Express 12, 4490–4495 (2004).

    Article  ADS  Google Scholar 

  25. Elser, D. et al. Reduction of guided acoustic wave Brillouin scattering in photonic crystal fibers. Phys. Rev. Lett. 97, 133901 (2006).

    Article  ADS  Google Scholar 

  26. Agrawal, G. P. Nonlinear Fiber Optics 3rd ed. (Academic, 2001).

    MATH  Google Scholar 

  27. Reeves, W., Knight, J., Russell, P. & Roberts, P. Demonstration of ultra-flattened dispersion in photonic crystal fibers. Opt. Express 10, 609–613 (2002).

    Article  ADS  Google Scholar 

  28. Tajima, K., Zhou, J., Nakajima, K. & Sato, K. Ultralow loss and long length photonic crystal fiber, J. Lightwave Technol. 22, 7–10 (2004).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to K. Koshino and H. Ishihara for fruitful discussions. This research was supported in part by a Grant-in-Aid for Creative Scientific Research (no. 17GS1204) and a Grant-in-Aid for JSPS Fellows (no. 20009351) from the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Matsuda.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuda, N., Shimizu, R., Mitsumori, Y. et al. Observation of optical-fibre Kerr nonlinearity at the single-photon level. Nature Photon 3, 95–98 (2009). https://doi.org/10.1038/nphoton.2008.292

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.292

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing