Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Determination of supramolecular structure and spatial distribution of protein complexes in living cells

Abstract

Resonant energy transfer from an optically excited donor molecule to a non-excited acceptor molecule residing nearby is widely used to detect molecular interactions in living cells. To date, resonant energy transfer has been used to obtain stoichiometric information, such as the number of proteins forming a complex, for a handful of proteins, but only after performing sequential scans of the emission wavelengths, excitation wavelengths, or sometimes both. During this lengthy process of measurement, the molecular makeup of a cellular region may change, limiting the applicability of resonant energy transfer to the determination of cellular averages. Here, we demonstrate a method for the determination of protein complex size, configuration, and spatial distribution in single living cells. It relies on a spectrally resolved two-photon microscope, a simple but competent theory, and a judicious selection of fluorescent tags. This approach eventually may lead to tracking the dynamics of individual molecular complexes inside living cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Typical results obtained with the TPM in Fig. 1 from yeast cells expressing GFP2, YFP and GFP2–YFP (that is, linked proteins) in their cytoplasm, or the receptor Ste2p in internal and external membranes.
Figure 3: Results of the analysis of the data in Fig. 2 with the theory described in the text.
Figure 4: Pixel-level distribution of Eapp for the cells shown on the last two rows in Fig. 3 and possible models to describe them.

Similar content being viewed by others

References

  1. Carriba, P. et al. Detection of heteromerization of more than two proteins by sequential BRET-FRET. Nature Methods 5, 727–733 (2008).

    Article  Google Scholar 

  2. Coulon, V. et al. Subcellular imaging of dynamic protein interactions by bioluminescence resonance energy transfer. Biophys. J. 94, 1001–1009 (2008).

    Article  ADS  Google Scholar 

  3. Maurel, D. et al. Cell-surface protein–protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nature Methods 5, 561–567 (2008).

    Article  Google Scholar 

  4. Shyu, Y. J., Suarez, C. D. & Hu, C. D. Visualization of AP-1 NF-κB ternary complexes in living cells by using a BiFC-based FRET. Proc. Natl Acad. Sci. USA 105, 151–156 (2008).

    Article  ADS  Google Scholar 

  5. Spriet, C. et al. Enhanced FRET contrast in lifetime imaging. Cytometry A 73, 745–753 (2008).

    Article  Google Scholar 

  6. Chen, Y., Mauldin, J. P., Day, R. N. & Periasamy, A. Characterization of spectral FRET imaging microscopy for monitoring nuclear protein interactions. J. Microsc. 228, 139–152 (2007).

    Article  MathSciNet  Google Scholar 

  7. Xu, X. et al. Imaging protein interactions with bioluminescence resonance energy transfer (BRET) in plant and mammalian cells and tissues. Proc. Natl Acad. Sci. USA 104, 10264–10269 (2007).

    Article  ADS  Google Scholar 

  8. Demarco, I. A., Periasamy, A., Booker, C. F. & Day, R. N. Monitoring dynamic protein interactions with photoquenching FRET. Nature Methods 3, 519–524 (2006).

    Article  Google Scholar 

  9. Meyer, B. H. et al. FRET imaging reveals that functional neurokinin-1 receptors are monomeric and reside in membrane microdomains of live cells. Proc. Natl Acad. Sci. USA 103, 2138–2143 (2006).

    Article  ADS  Google Scholar 

  10. Pfleger, K. D. & Eidne, K. A. Illuminating insights into protein–protein interactions using bioluminescence resonance energy transfer (BRET). Nature Methods 3, 165–174 (2006).

    Article  Google Scholar 

  11. Raicu, V., Jansma, D. B., Miller, R. J. & Friesen, J. D. Protein interaction quantified in vivo by spectrally resolved fluorescence resonance energy transfer. Biochem. J. 385, 265–277 (2005).

    Article  Google Scholar 

  12. Wallrabe, H. & Periasamy, A. Imaging protein molecules using FRET and FLIM microscopy. Curr. Opin. Biotechnol. 16, 19–27 (2005).

    Article  Google Scholar 

  13. An, S. J. & Almers, W. Tracking SNARE complex formation in live endocrine cells. Science 306, 1042–1046 (2004).

    Article  ADS  Google Scholar 

  14. Chen, Y. & Periasamy, A. Characterization of two-photon excitation fluorescence lifetime imaging microscopy for protein localization. Microscopy Res. Tech. 63, 72–80 (2004).

    Article  Google Scholar 

  15. Lippincott-Schwartz, J. & Patterson, G. H. Development and use of fluorescent protein markers in living cells. Science 300, 87–91 (2003).

    Article  ADS  Google Scholar 

  16. Raicu, V. & Popescu, A. I. Integrated Molecular and Cellular Biophysics (Springer, 2008).

    Book  Google Scholar 

  17. Lakowicz, J. R. Principles of Fluorescence Spectroscopy (Springer, 2006).

    Book  Google Scholar 

  18. Selvin, P. R. The renaissance of fluorescence resonance energy transfer. Nat. Struct. Biol. 7, 730–734 (2000).

    Article  Google Scholar 

  19. Clegg, R. M. in Fluorescence Imaging Spectroscopy and Microscopy (eds Wang, X. F. & Herman, B.) (John Wiley & Sons, 1996).

    Google Scholar 

  20. Raicu, V. Efficiency of resonance energy transfer in homo-oligomeric complexes of proteins. J. Biol. Phys. 33, 109–127 (2007).

    Article  Google Scholar 

  21. Song, L., Hennink, E. J., Young, I. T. & Tanke, H. J. Photobleaching kinetics of fluorescein in quantitative fluorescence microscopy. Biophys. J. 68, 2588–2600 (1995).

    Article  ADS  Google Scholar 

  22. Kubitscheck, U., Schweitzer-Stenner, R., Arndt-Jovin, D. J., Jovin, T. M. & Pecht, I. Distribution of type I Fc-receptors on the surface of mast cells probed by fluorescence resonance energy transfer. Biophys. J. 64, 110–120 (1993).

    Article  Google Scholar 

  23. Wlodarczyk, J. et al. Analysis of FRET signals in the presence of free donors and acceptors. Biophys. J. 94, 986–1000 (2008).

    Article  ADS  Google Scholar 

  24. Neher, R. A. & Neher, E. Applying spectral fingerprinting to the analysis of FRET images. Microsc. Res. Tech. 64, 185–195 (2004).

    Article  Google Scholar 

  25. Zimmermann, T., Rietdorf, J., Girod, A., Georget, V. & Pepperkok, R. Spectral imaging and linear un-mixing enables improved FRET efficiency with a novel GFP2–YFP FRET pair. FEBS Lett. 531, 245–249 (2002).

    Article  Google Scholar 

  26. Lee, N. K. et al. Three-color alternating-laser excitation of single molecules: monitoring multiple interactions and distances. Biophys. J. 92, 303–312 (2007).

    Article  ADS  Google Scholar 

  27. Eggeling, C., Kask, P., Winkler, D. & Jager, S. Rapid analysis of Forster resonance energy transfer by two-color global fluorescence correlation spectroscopy: trypsin proteinase reaction. Biophys. J. 89, 605–618 (2005).

    Article  Google Scholar 

  28. Angers, S. et al. Detection of beta 2-adrenergic receptor dimerization in living cells using bioluminescence resonance energy transfer (BRET). Proc. Natl Acad. Sci. USA 97, 3684–3689 (2000).

    ADS  Google Scholar 

  29. Xu, Y., Piston, D. W. & Johnson, C. H. A bioluminescence resonance energy transfer (BRET) system: application to interacting circadian clock proteins. Proc. Natl Acad. Sci. USA 96, 151–156 (1999).

    Article  ADS  Google Scholar 

  30. Hoshino, H., Nakajima, Y. & Ohmiya, Y. Luciferase-YFP fusion tag with enhanced emission for single-cell luminescence imaging. Nature Methods 4, 637–639 (2007).

    Article  Google Scholar 

  31. Raicu, V. & Fung, R. US patent application 11/904,860 (2007).

  32. Zipfel, W. R., Williams, R. M. & Webb, W. W. Nonlinear magic: multiphoton microscopy in the biosciences. Nature Biotechnol. 21, 1369–1377 (2003).

    Article  Google Scholar 

  33. Denk, W., Strickler, J. H. & Webb, W. W. Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

    Article  ADS  Google Scholar 

  34. Kumazaki, S. et al. A line-scanning semi-confocal multi-photon fluorescence microscope with a simultaneous broadband spectral acquisition and its application to the study of the thylakoid membrane of a cyanobacterium Anabaena PCC7120. J. Microsc. 228, 240–254 (2007).

    Article  MathSciNet  Google Scholar 

  35. Raicu, V., Fung, R., Melnichuk, M., Chaturvedi, A. & Gillman, D. in Proc. SPIE (eds Periasamy, A. & So, P. T. C.) 6442 M6441–6442 M6445 (SPIE, 2007).

    Google Scholar 

  36. Weiner, A. M. Femtosecond pulse shaping using spatial light modulators. Rev. Sci. Instrum. 71, 1929–1960 (2000).

    Article  ADS  Google Scholar 

  37. Raicu, V. et al. in Proc. SPIE (eds Periasamy, A. & So, P. T. C.) 686018 (SPIE, 2008).

    Google Scholar 

  38. Dela Cruz, J. M., Lozovoy, V. V. & Dantus, M. Coherent control improves biomedical imaging with ultrashort shaped pulses. J. Photochem. Photobiol. A: Chemistry 180, 307–313 (2006).

    Article  Google Scholar 

  39. Overton, M. C., Chinault, S. L. & Blumer, K. J. Oligomerization of G-protein-coupled receptors: Lessons from the yeast Saccharomyces cerevisiae. Eukaryotic Cell 4, 1963–1970 (2005).

    Article  Google Scholar 

  40. Duncan, R. R., Bergmann, A., Cousin, M. A., Apps, D. K. & Shipston, M. J. Multi-dimensional time-correlated single photon counting (TCSPC) fluorescence lifetime imaging microscopy (FLIM) to detect FRET in cells. J. Microsc. 215, 1–12 (2004).

    Article  MathSciNet  Google Scholar 

  41. James, J. R., Oliveira, M. I., Carmo, A. M., Iaboni, A. & Davis, S. J. A rigorous experimental framework for detecting protein oligomerization using bioluminescence resonance energy transfer. Nature Methods 3, 1001–1006 (2006).

    Article  Google Scholar 

  42. Kenworthy, A. K. & Edidin, M. Distribution of a glycosylphosphatidylinositol-anchored protein at the apical surface of MDCK cells examined at a resolution of <100 Å using imaging fluorescence resonance energy transfer. J. Cell Biol. 142, 69–84 (1998).

    Article  Google Scholar 

  43. Wolber, P. K. & Hudson, B. S. An analytic solution to the Forster Energy Transfer problem in two dimensions. Biophys. J. 28, 197–210 (1979).

    Article  ADS  Google Scholar 

  44. Goin, J. C. & Nathanson, N. M. Quantitative analysis of muscarinic acetylcholine receptor homo- and heterodimerization in live cells: regulation of receptor down-regulation by heterodimerization. J. Biol. Chem. 281, 5416–5425 (2006).

    Article  Google Scholar 

  45. Mercier, J. F., Salahpour, A., Angers, S., Breit, A. & Bouvier, M. Quantitative assessment of beta 1- and beta 2-adrenergic receptor homo- and heterodimerization by bioluminescence resonance energy transfer. J. Biol. Chem. 277, 44925–44931 (2002).

    Article  Google Scholar 

  46. Kim, K. H., Buehler, C. & So, P. T. C. High-speed, two-photon scanning microscope. Appl. Opt. 38, 6004–6009 (1999).

    Article  ADS  Google Scholar 

  47. Raymond, C. K., Sims, E. H. & Olson, M. V. Linker-mediated recombinational subcloning of large DNA fragments using yeast. Genome Res. 12, 190–197 (2002).

    Article  Google Scholar 

  48. Kurjan, J. Pheromone response in yeast. Annu. Rev. Biochem. 61, 1097–1129 (1992).

    Article  Google Scholar 

  49. Stefan, C. J. & Blumer, K. J. A syntaxin homolog encoded by VAM3 mediates down-regulation of a yeast G protein-coupled receptor. J. Biol. Chem. 274, 1835–1841 (1999).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Wisconsin Institute for Biomedical and Health Technology (grant no. W620 to V.R.), seed funds from the UWM Research Growth Initiative (grant no. X014 to V.R.), and a grant from Canadian Institutes of Health Research (grant no. MOP43990 to J.W.W.). We thank D. Gillman for useful suggestions regarding the computer routines for instrument control, M. J. Woodside for his assistance with the lifetime imaging, and S. Angers for very useful discussions on BRET. We thank K. J. Blumer for providing YFP.

Author information

Authors and Affiliations

Authors

Contributions

V.R. coordinated the project, designed the TPM, built the optical set-up, developed the theory and the algorithms for image reconstruction and data analysis, analysed data, and wrote the paper. M.S., S.R. and M.F. carried out experiments using the TPM and analysed data. R.F. wrote computer codes for hardware control and for image reconstruction. M.M. interfaced the scanners with the computer and built an earlier version of the optical set-up. D.B.J. made the genetic constructs. L.P. and J.W.W. determined the RET efficiency using FLIM. D.K.S. participated in theoretical modelling. All authors contributed to manuscript editing.

Corresponding authors

Correspondence to Valerica Raicu or David B. Jansma.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Raicu, V., Stoneman, M., Fung, R. et al. Determination of supramolecular structure and spatial distribution of protein complexes in living cells. Nature Photon 3, 107–113 (2009). https://doi.org/10.1038/nphoton.2008.291

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.291

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing