Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fourier transform spectroscopy with a laser frequency comb

Abstract

Molecular fingerprinting using absorption spectroscopy is a powerful analytical method, particularly in the infrared, the region of intense spectral signatures. Fourier transform spectroscopy—the widely used and essential tool for broadband spectroscopy—enables the recording of multi-octave-spanning spectra, exhibiting 100 MHz resolution with an accuracy of 1 × 10−9 and 1 × 10−2 in wavenumber and intensity determination, respectively. Typically, 1 × 106 independent spectral elements may be measured simultaneously within a few hours, with only average sensitivity. Here, we show that by using laser frequency combs as the light source of Fourier transform spectroscopy it is possible to record well-resolved broadband absorption and dispersion spectra in a single experiment, from the beating signatures of neighbouring comb lines in the interferogram. The sensitivity is thus expected to increase by several orders of magnitude. Experimental proof of principle is here carried out on the 1.5-µm overtone bands of acetylene, spanning 80 nm with a resolution of 1.5 GHz. Consequently, without any optical modification, the performance of Fourier spectrometers may be drastically boosted.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of the FC–FTS experiment.
Figure 2: In-quadrature and in-phase FC–FTS spectra of C2H2 probed by a Cr4+:YAG comb.
Figure 3: Comparison between observed and simulated spectra.
Figure 4: Absorption spectrum of C2H2 and CO2 recorded with a Cr4+:YAG comb source by traditional Fourier spectroscopy.

Similar content being viewed by others

References

  1. Udem, T., Holzwarth, R. & Hänsch, T. W. Optical frequency metrology. Nature 416, 233–237 (2002).

    Article  ADS  Google Scholar 

  2. Keilmann, F., Gohle, C. & Holzwarth, R. Time-domain mid-infrared frequency-comb spectrometer. Opt. Lett. 29, 1542–1544 (2004).

    Article  ADS  Google Scholar 

  3. Schliesser, A., Brehm, M., Keilmann, F. and van der Weide, D. W. Frequency-comb infrared spectrometer for rapid, remote chemical sensing. Opt. Express 13, 9029–9038 (2005).

    Article  ADS  Google Scholar 

  4. Coddington, I., Swann, W. C. & Newbury, N. R. Coherent multiheterodyne spectroscopy using stabilized optical frequency combs. Phys. Rev. Lett. 100, 013902 (2008).

    Article  ADS  Google Scholar 

  5. Yasui, T., Saneyoshi, E. & Araki, T. Asynchronous optical sampling terahertz time-domain spectroscopy for ultrahigh spectral resolution and rapid data acquisition. Appl. Phys. Lett. 87, 061101 (2005).

    Article  ADS  Google Scholar 

  6. Yasui, T., Kabetani, Y., Saneyoshi, E., Yokoyama, S. & Araki, T. Terahertz frequency comb by multifrequency-heterodyning photoconductive detection for high-accuracy, high-resolution terahertz spectroscopy. Appl. Phys. Lett. 88, 241104 (2006).

    Article  ADS  Google Scholar 

  7. Giaccari, P., Deschênes, J.-D., Saucier, P., Genest, J. & Tremblay, P. Active Fourier-transform spectroscopy combining the direct RF beating of two fiber-based mode-locked lasers with a novel referencing method. Opt. Express 16, 4347–4365 (2008).

    Article  ADS  Google Scholar 

  8. Schiller, S. Spectrometry with frequency combs. Opt. Lett. 27, 766–768 (2002).

    Article  ADS  Google Scholar 

  9. Kraetschmer, T., Walewski, J. W. & Sanders, S. T. Continuous-wave frequency comb Fourier transform source based on a high-dispersion cavity. Opt. Lett. 31, 3179–3181 (2006).

    Article  ADS  Google Scholar 

  10. Thorpe, M. J., Moll, K. D., Jones, R. J., Safdi, B. & Ye, J. Broadband cavity ringdown spectroscopy for sensitive and rapid molecular detection. Science 311, 1595–1599 (2006).

    Article  ADS  Google Scholar 

  11. Thorpe, M. J., Balslev, C. D., Kirchner, M. S. & Ye, J. Cavity-enhanced optical frequency comb spectroscopy: application to human breath analysis. Opt. Express 16, 2387–2397 (2008).

    Article  ADS  Google Scholar 

  12. Gohle, C., Stein, B., Schliesser, A., Udem, T. & Hänsch, T. W. Frequency comb vernier spectroscopy for broadband, high-resolution, high-sensitivity absorption and dispersion spectra. Phys. Rev. Lett. 99, 263902 (2007).

    Article  ADS  Google Scholar 

  13. Thorpe, M. J., Hudson, D. D., Moll, K. D., Lasri, J. & Ye, J. Cavity-ringdown molecular spectroscopy based on an optical frequency comb at 1.45–1.65 µm. Opt. Lett. 32, 307–309 (2007).

    Article  ADS  Google Scholar 

  14. Gherman, T. et al. High sensitivity broad-band mode-locked cavity-enhanced absorption spectroscopy: measurement of Ar* (3P2) atom and N2+ ion densities. J. Phys. D 37, 2408–2415 (2004).

    Article  ADS  Google Scholar 

  15. Crosson, E. R. et al. Pulse-stacked cavity ring-down spectroscopy. Rev. Sci. Instrum. 70, 4–10 (1999).

    Article  ADS  Google Scholar 

  16. Diddams, S. A., Hollberg, L. & Mbele, V. Molecular fingerprinting with the resolved modes of a femtosecond laser frequency comb. Nature 445, 627–630 (2007).

    Article  Google Scholar 

  17. Thorpe, M. J. & Ye, J. Cavity-enhanced direct frequency comb spectroscopy. Appl. Phys. B 91, 397–414 (2008).

    Article  ADS  Google Scholar 

  18. Bjorklund, G. C. Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions. Opt. Lett. 5, 15–17 (1980).

    Article  ADS  Google Scholar 

  19. Guelachvili, G. High-accuracy Doppler-limited 106 samples Fourier transform spectroscopy. Appl. Opt. 17, 1322–1326 (1978).

    Article  ADS  Google Scholar 

  20. Picqué, N. & Guelachvili, G. High-information time-resolved Fourier transform spectroscopy at work. Appl. Opt. 39, 3984–3990 (2000).

    Article  ADS  Google Scholar 

  21. Nakagawa, K., de Labachelerie, M., Awaji, Y. & Kourogi, M. Accurate optical frequency atlas of the 1.5-μm bands of acetylene. J. Opt. Soc. Am. B. 13, 2708–2714 (1996).

    Article  ADS  Google Scholar 

  22. Tillman, K. A., Maier, R. R. J., Reid, D. T. & McNaghten, E. D. Mid-infrared absorption spectroscopy of methane using a broadband femtosecond optical parametric oscillator based on aperiodically poled lithium niobate. J. Opt. A. 7, S408–S414 (2005).

    Article  ADS  Google Scholar 

  23. Mandon, J., Guelachvili, G., Picqué, N., Druon, F. & Georges, P. Femtosecond laser Fourier transform absorption spectroscopy. Opt. Lett. 32, 1677–1679 (2007).

    Article  ADS  Google Scholar 

  24. Sorokin, E., Sorokina, I. T., Mandon, J., Guelachvili, G. & Picqué, N. Sensitive multiplex spectroscopy in the molecular fingerprint 2.4 µm region with a Cr2+:ZnSe femtosecond laser. Opt. Express 15, 16540–16545 (2007).

    Article  ADS  Google Scholar 

  25. Miller, C. E. & Brown, L. R. Near infrared spectroscopy of carbon dioxide I. 16O12C16O line positions. J. Mol. Spectrosc. 228, 329–354 (2004).

    Article  ADS  Google Scholar 

  26. Mandon, J. et al. Enhancement of molecular dispersion spectral signatures in mode-locked lasers. WEoB.4, 3rd EPS-QEOD Europhoton Conference, Paris, France (2008).

  27. Guelachvili, G. Near infrared wide-band spectroscopy with 27-MHz resolution. Appl. Opt. 16, 2097–2101 (1977).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathalie Picqué.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mandon, J., Guelachvili, G. & Picqué, N. Fourier transform spectroscopy with a laser frequency comb. Nature Photon 3, 99–102 (2009). https://doi.org/10.1038/nphoton.2008.293

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing