Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence

Abstract

The orbital angular momentum (OAM) of light, associated with a helical structure of the wavefunction, has great potential in quantum photonics, as it allows a higher dimensional quantum space to be attached to each photon1,2. Hitherto, however, the use of OAM has been hindered by difficulties in its manipulation. Here, by making use of the recently demonstrated spin-OAM information transfer tools3,4, we report the first observation of the Hong–Ou–Mandel coalescence5 of two incoming photons having non-zero OAM into the same outgoing mode of a beamsplitter. The coalescence can be switched on and off by varying the input OAM state of the photons. Such an effect has then been used to carry out the 1 → 2 universal optimal quantum cloning of OAM-encoded qubits6,7,8, using the symmetrization technique already developed for polarization9,10. These results are shown to be scalable to quantum spaces of arbitrary dimensions, even combining different degrees of freedom of the photons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup for demonstrating the Hong-Ou-Mandel (HOM) effect and for implementing OAM quantum cloning.
Figure 2: Experimental Hong–Ou–Mandel (HOM) effect with OAM.
Figure 3: Experimental shrunk Bloch sphere of the OAM cloned qubits in the subspace o2.

Similar content being viewed by others

References

  1. Molina-Terriza, G., Torres, J. P. & Torner, L. Twisted photons. Nature Phys. 3, 305–310 (2007).

    Article  ADS  Google Scholar 

  2. Franke-Arnold, S., Allen, L. & Padgett, M. Advances in optical angular momentum. Laser Photon. 2, 299–313 (2008).

    Article  Google Scholar 

  3. Marrucci, L., Manzo, C. & Paparo, D. Optical spin-to-orbital angular momentum conversion in inhomogeneous anisotropic media. Phys. Rev. Lett. 96, 163905 (2006).

    Article  ADS  Google Scholar 

  4. Nagali, E. et al. Quantum information transfer from spin to orbital angular momentum of photons. Phys. Rev. Lett. 103, 013601 (2009).

    Article  ADS  Google Scholar 

  5. Hong, C. K., Ou, Z. Y. & Mandel, L. Measurement of subpicosecond time intervals between two photons by interference. Phys. Rev. Lett. 59, 2044 (1987).

    Article  ADS  Google Scholar 

  6. Lamas-Linares, A., Simon, C., Howell, J. C. & Bouwmeester, D. Experimental quantum cloning of single photons. Science 296, 712–714 (2002).

    Article  ADS  Google Scholar 

  7. De Martini, F., Buzek, V., Sciarrino, F. & Sias, C. Experimental realization of the quantum universal NOT gate. Nature 419, 815–818 (2002).

    Article  ADS  Google Scholar 

  8. Scarani, V., Iblisdir, S. & Gisin, N. Quantum cloning. Rev. Mod. Phys. 77, 1225–1256 (2005).

    Article  ADS  MathSciNet  Google Scholar 

  9. Ricci, M., Sciarrino, F., Sias, C. & De Martini, F. Teleportation scheme implementing the Universal Optimal Quantum Cloning Machine and the Universal NOT gate. Phys. Rev. Lett. 92, 047901 (2004).

    Article  ADS  Google Scholar 

  10. Irvine, W. T. M., Lamas-Linares, A., de Dood, M. J. A. & Bouwmeester, D. Optimal quantum cloning on a beamsplitter. Phys. Rev. Lett. 92, 047902 (2004).

    Article  ADS  Google Scholar 

  11. Cerf, N. J., Bourennane, M., Karlsson, A. & Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 88, 127902 (2002).

    Article  ADS  Google Scholar 

  12. Barbieri, M., De Martini, F., Mataloni, P., Vallone, G. & Cabello, A. Enhancing the violation of the Einstein-Podolosky–Rosen local realism by quantum hyperentanglement. Phys. Rev. Lett. 96, 163905 (2006).

    Article  Google Scholar 

  13. Barreiro, J. T., Langford, N. K., Peters, N. A. & Kwiat, P. G. Generation of hyperentangled photons pairs. Phys. Rev. Lett. 95, 260501 (2005).

    Article  ADS  Google Scholar 

  14. Barreiro, J. T., Wei, T. C. & Kwiat, P. G. Beating the channel capacity limit for linear photonic superdense coding. Nature Phys. 4, 282–286 (2008).

    Article  Google Scholar 

  15. Aolita, L. & Walborn, S. P. Quantum communication without alignment using multiple-qubit single-photon states. Phys. Rev. Lett. 98, 100501 (2007).

    Article  ADS  Google Scholar 

  16. Gatti, A., Brambilla, E., Lugiato, L. A. & Kolobov, M. I. Quantum entangled images. Phys. Rev. Lett. 83, 1763 (1999).

    Article  ADS  Google Scholar 

  17. Mair, A., Vaziri, A., Weihs, G. & Zeilinger, A. Entanglement of the orbital angular momentum states of photons. Nature 412, 313–316 (2001).

    Article  ADS  Google Scholar 

  18. Vaziri, A., Pan, J. W., Jennewein, T., Weihs, G. & Zeilinger, A. Concentration of higher dimensional entanglement: qutrits of photon orbital angular momentum. Phys. Rev. Lett. 91, 227902 (2003).

    Article  ADS  Google Scholar 

  19. Langford, N. K. et al. Measuring entangled qutrits and their use for quantum bit commitment. Phys. Rev. Lett. 93, 053601 (2004).

    Article  ADS  Google Scholar 

  20. Bouwmeester, D. et al. Experimental quantum teleportation. Nature 390, 575–579 (1997).

    Article  ADS  Google Scholar 

  21. Boschi, D., Branca, S., De Martini, F., Hardy, L. & Popescu, S. Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 80, 1121 (1998).

    Article  ADS  MathSciNet  Google Scholar 

  22. Kok, P. et al. Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79, 135–174 (2007).

    Article  ADS  Google Scholar 

  23. Specht, H. P. et al. Phase shaping of single-photon wave packets. Nature Photon., 3, 469–472 (2009).

    Article  ADS  Google Scholar 

  24. Wootters, W. K. & Zurek, W. H. A single quantum cannot be cloned. Nature 299, 802–803 (1982).

    Article  ADS  Google Scholar 

  25. Gisin, N., Ribordy, G., Tittel, W. & Zbinden, H. Quantum cryptography. Rev. Mod. Phys. 74, 145–195 (2002).

    Article  ADS  Google Scholar 

  26. Ricci, M. et al. Separating the classical and quantum information via quantum cloning. Phys. Rev. Lett. 95, 090504 (2005).

    Article  ADS  Google Scholar 

  27. Sciarrino, F., Sias, C., Ricci, M. & De Martini, F. Realization of universal optimal quantum machines by projective operators and stochastic maps. Phys. Rev. A 70, 052305 (2004).

    Article  ADS  Google Scholar 

  28. Fiurasek, J. Optimal probabilistic cloning and purification of quantum states. Phys. Rev. A 70, 032308 (2004).

    Article  ADS  MathSciNet  Google Scholar 

  29. Padgett, M. J. & Courtial, J. Poincaré-sphere equivalent for light beams containing orbital angular momentum. Opt. Lett. 24, 430–432 (1999).

    Article  ADS  Google Scholar 

  30. Navez, P. & Cerf, N. J. Cloning a real d-dimensional quantum state on the edge of the no-signaling condition. Phys. Rev. A, 68, 032313 (2003).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

E.N., L.S., F.S., F.D.M., L.M. and E.S. conceived and designed the experiments. E.N., L.S. and F.S. performed the experiments. E.N., L.S. and F.S. analysed the data. L.M., B.P., E.K. and E.S. contributed materials. All authors contributed to the writing of the paper.

Corresponding authors

Correspondence to Fabio Sciarrino or Lorenzo Marrucci.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagali, E., Sansoni, L., Sciarrino, F. et al. Optimal quantum cloning of orbital angular momentum photon qubits through Hong–Ou–Mandel coalescence. Nature Photon 3, 720–723 (2009). https://doi.org/10.1038/nphoton.2009.214

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.214

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing