Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Terahertz amplifier based on gain switching in a quantum cascade laser

Abstract

Terahertz time-domain spectroscopy is widely used in a broad range of applications where knowledge of both the amplitude and phase of a terahertz wave can reveal useful information about a sample1. However, a means of amplifying terahertz pulses, which would be of great benefit in improving the applicability of time-domain spectroscopy, is lacking. Although terahertz quantum cascade lasers2 are promising devices for terahertz amplification3, gain clamping4 limits the attainable amplification5. Here, we circumvent gain clamping and demonstrate amplification of terahertz pulses by ultrafast gain switching of a quantum cascade laser through the use of an integrated Auston switch6. This unclamps the gain by placing the laser in a non-equilibrium state that allows large amplification of the electromagnetic field within the cavity. This technique offers the potential to produce high field terahertz pulses that approach the quantum cascade laser saturation field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Terahertz QCL with an integrated Auston switch.
Figure 2: Fields and spectra of the terahertz probe pulses with the Austin switch ON and OFF.
Figure 3: Duration of the unclamped gain created by the Auston switch.
Figure 4: Gain with the Auston switch OFF and ON—clamped and unclamped gain.

Similar content being viewed by others

References

  1. Tonouchi, M. Cutting edge terahertz technology. Nature Photon. 1, 97–105 (2007).

    Article  ADS  Google Scholar 

  2. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  3. Kroll, J. et al. Phase resolved stimulated emission measurements in a laser. Nature 449, 698–700 (2007).

    Article  ADS  Google Scholar 

  4. Jukam, N. et al. Investigation of spectral gain narrowing in quantum cascade lasers using terahertz time domain spectroscopy. Appl. Phys. Lett. 93, 101115 (2008).

    Article  ADS  Google Scholar 

  5. Koestor, C. J. & Snitzer, E. Amplification in a fiber laser. Appl. Opt. 3, 1182–1186 (1964).

    Article  ADS  Google Scholar 

  6. Auston, D. H. Picosecond optoelectronic switching and gating in silicon. Appl. Phys. Lett. 26, 101–103 (1975).

    Article  ADS  Google Scholar 

  7. Chan, W. L., Deibel, J. & Mittleman, D. M. Imaging with terahertz radiation. Rep. Prog. Phys. 70, 1325–1379 (2007).

    Article  ADS  Google Scholar 

  8. Stoik, C. D., Bohm, M. J. & Blackshire, J. L. Nondestructive evaluation of aircraft composites using transmissive terahertz time domain spectroscopy. Opt. Express 16, 17039–17051 (2008).

    Article  ADS  Google Scholar 

  9. Shen, Y. C. et al. Detection and identification of explosives using terahertz pulse spectroscopic imaging. App. Phys. Lett. 86, 241116 (2005).

    Article  ADS  Google Scholar 

  10. Dreyhaupt, A., Winnerl, S., Dekorsy, T. & Helm, M. High intensity terahertz radiation from a microstructure large-area photoconductor. Appl. Phys. Lett. 86, 121114 (2005).

    Article  ADS  Google Scholar 

  11. Loffler, T., Hahn, T., Thomson, M., Jacob, F. & Roskos, H. G. Large-area electro-optic ZnTe terahertz emitters. Opt. Express 13, 5355–5362 (2005).

    Article  ADS  Google Scholar 

  12. Williams, B. S. Terahertz quantum cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  13. Jukam, N. et al. Gain measurements of quantum cascade lasers using terahertz time domain spectroscopy. IEEE. J. Sel. Top. Quantum Electron. 14, 436–442 (2008).

    Article  ADS  Google Scholar 

  14. Xu, J. et al. Tunable terahertz quantum cascade lasers with an external cavity. Appl. Phys. Lett. 91, 121104 (2007).

    Article  ADS  Google Scholar 

  15. Mauro, C. Amplification of terahertz radiation in quantum cascade structures. J. Appl. Phys. 102, 063101 (2007).

    Article  ADS  Google Scholar 

  16. Walpole, J. N. Semicondcutor amplifiers and lasers with tapered gain regions. Opt. Quantum Electron. 28, 623–645 (1996).

    Article  Google Scholar 

  17. Duguay, M. A. & Damen, T. C. Picosecond measurement of spontaneous and stimulated emission from injection lasers. Appl. Phys. Lett. 40, 667–669 (1982).

    Article  ADS  Google Scholar 

  18. Göbel, O. et al. Direct gain modulation of a semiconductor laser by a GaAs picosecond optoelectronic switch. Appl. Phys. Lett. 42, 25–27 (1983).

    Article  ADS  Google Scholar 

  19. Paiella, R. et al. High-speed operation of gain-switched midinfrared quantum cascade lasers. Appl. Phys. Lett. 75, 2536–2538 (1999).

    Article  ADS  Google Scholar 

  20. Barbieri, S. 2.9 THz quantum cascade lasers operating up to 70 K in continuous wave. Appl. Phys. Lett. 85, 1674–1676 (2004).

    Article  ADS  Google Scholar 

  21. Parz, W. Ultra fast probing of light matter interaction in a midinfrared quantum cascade laser. Appl. Phys. Lett. 93, 091105 (2008).

    Article  ADS  Google Scholar 

  22. Dhillon, S. et al. Ultralow threshold current terahertz quantum cascade lasers based on double-metal buried strip waveguides. Appl. Phys. Lett. 87, 071107 (2005).

    Article  ADS  Google Scholar 

  23. Lee, Y. S., Meade, T., Perlin, V., Winful, H. & Norris, T. B. Generation of narrow-band terahertz radiation via optical rectification of femtosecond pulses in periodically poled lithium niobate. Appl. Phys. Lett. 76, 2505–2507 (2000).

    Article  ADS  Google Scholar 

  24. Danielson, J. R. et al. Intense band terahertz generation via type II difference-frequency generation in ZnTe using chirped optical pulses. J. Appl. Phys. 104, 033111 (2008).

    Article  ADS  Google Scholar 

  25. Cole, B. E., Williams, J. B., King, B. T., Sherwin, M. S. & Stanley, C. R. Coherent manipulation of semiconductor quantum bits with terahertz radiation. Nature 410, 60–63 (2001).

    Article  ADS  Google Scholar 

  26. Carter, S. G. Quantum coherence in an optical modulator. Science 310, 651–653 (2005).

    Article  ADS  Google Scholar 

  27. Freeman, J. R., Marshall, O. P., Beere, H. E. & Ritchie, D. A. Electrically switchable emission in terahertz quantum cascade lasers. Opt. Express 16, 19830–19834 (2008).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Direction Générale de l'Armement (DGA), Centre de compétence NanoSciences (CNano), Agence Nationale de la Recherche (ANR), Engineering and Physical Sciences Research Council (EPSRC) and the EC NOTES programme. The Laboratoire Pierre Aigrain, École Normale Supérieure (LPA-ENS) is a ‘Unité Mixte de Recherche Associée au Centre Nationale de la Recherche Scientifique (CNRS) UMR8551 et aux Universités Paris 6 et 7’. Device fabrication was performed at the nanocentre Institut d'Électronique Fondamentale-Minerve (CTU-IEF-Minerve), which was partly funded by the ‘Conseil General de l'Essonne’.

Author information

Authors and Affiliations

Authors

Contributions

Data were taken by N.J., S.S.D., D.O. and J.M., and analysed by N.J. and S.S.D. The experiment was conceived by N.J. Samples were grown by S.P.K., E.H.L. and A.G.D., and processed by C.M., S.B. and C.S. The manuscript was prepared by N.J., S.S.D. and J.T. with contributions from S.B., C.S. and E.H.L. J.T. and S.S.D. supervised and coordinated all work.

Corresponding author

Correspondence to Nathan Jukam.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jukam, N., Dhillon, S., Oustinov, D. et al. Terahertz amplifier based on gain switching in a quantum cascade laser. Nature Photon 3, 715–719 (2009). https://doi.org/10.1038/nphoton.2009.213

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2009.213

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing