Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K

Abstract

Advances in semiconductor bandgap engineering have resulted in the recent development of the terahertz quantum cascade laser1. These compact optoelectronic devices now operate in the frequency range 1.2–5 THz, although cryogenic cooling is still required2,3. Further progress towards the realization of devices operating at higher temperatures and emitting at longer wavelengths (sub-terahertz quantum cascade lasers) is difficult because it requires maintaining a population inversion between closely spaced electronic sub-bands (1 THz ≈ 4 meV). Here, we demonstrate a magnetic-field-assisted quantum cascade laser based on the resonant-phonon design. By applying appropriate electrical bias and strong magnetic fields above 16 T, it is possible to achieve laser emission from a single device over a wide range of frequencies (0.68–3.33 THz). Owing to the suppression of inter-Landau-level non-radiative scattering, the device shows magnetic field assisted laser action at 1 THz at temperatures up to 215 K, and 3 THz lasing up to 225 K.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Calculated electronic structure.
Figure 2: Optical and electrical characteristics of a terahertz QCL device in a magnetic field.
Figure 3: Laser emission properties as a function of voltage bias.
Figure 4: QCL device performance in terms of spectral coverage and operational temperature.

Similar content being viewed by others

References

  1. Köhler, R. et al. Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002).

    Article  ADS  Google Scholar 

  2. Walther, C. et al. Quantum cascade lasers operating from 1.2 to 1.6 THz. Appl. Phys. Lett. 91, 131122 (2007).

    Article  ADS  Google Scholar 

  3. Lee, A. et al. Real-time terahertz imaging over a standoff distance (>25 meters) . Appl. Phys. Lett. 89, 141125 (2006).

    Article  ADS  Google Scholar 

  4. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  5. Devenson, J., Teissier, R., Cathabard, O. & Baranova, A. N. InAs/AlSb quantum cascade lasers emitting below 3 µm. Appl. Phys. Lett. 90, 111118 (2007).

    Article  ADS  Google Scholar 

  6. Colombelli, R. et al. Far-infrared surface-plasmon quantum-cascade lasers at 21.5 µm and 24 µm wavelengths. Appl. Phys. Lett. 78, 2620–2622 (2001).

    Article  ADS  Google Scholar 

  7. Yu, J. S. et al. Temperature dependent characteristics of λ 3.8 µm room-temperature continuous-wave quantum-cascade lasers. Appl. Phys. Lett. 88, 251118 (2006).

    Article  ADS  Google Scholar 

  8. Williams, B. S. et al. 3.4-THz quantum cascade laser based on longitudinal-optical-phonon scattering for depopulation. Appl. Phys. Lett. 82, 1015–1017 (2007).

    Article  ADS  Google Scholar 

  9. Williams, B. S. et al. Operation of terahertz quantum-cascade lasers at 164 K in pulsed mode and at 117 K in continuous-wave mode. Opt. Express 13, 3331–3339 (2005).

    Article  ADS  Google Scholar 

  10. Belkin, M. A. et al. Terahertz quantum cascade lasers with copper metal–metal waveguides operating up to 178 K. Opt. Express 16, 3242–3248 (2008).

    Article  ADS  Google Scholar 

  11. Wingreen, N. S. & Stafford, C. A. Quantum-dot cascade laser: Proposal for an ultralow-threshold semiconductor laser. IEEE J. Quantum Electron. 33, 1170–1173 (1997).

    Article  ADS  Google Scholar 

  12. Hsu, C. F., O, J. S., Zory, P. & Botez, D. Intersubband quantum-box semiconductor lasers. IEEE J. Sel. Top. Quantum Electron. 6, 491–503 (2000).

    Article  ADS  Google Scholar 

  13. Kastalsky, A. et al. Magnetic field-induced suppression of acoustic phonon emission in a superlattice. J. Appl. Phys. 69, 841–845 (1991).

    Article  ADS  Google Scholar 

  14. Blank, A. et al. Suppression of intersubband nonradiative transitions by a magnetic field in quantum well laser devices. J. Appl. Phys. 74, 4795–4796 (1993).

    Article  ADS  Google Scholar 

  15. Smirnov, D. et al. Control of electron-optical-phonon scattering rates in quantum box cascade lasers. Phys. Rev. B 66, 121305(R) (2002).

    Article  ADS  Google Scholar 

  16. Leuliet, A. et al. Electron scattering spectroscopy by a high magnetic field in quantum cascade lasers. Phys. Rev. B 73, 085311 (2006).

    Article  ADS  Google Scholar 

  17. Alton, J. et al. Magnetic field in-plane quantization and tuning of population inversion in a THz superlattice quantum cascade laser. Phys. Rev. B 68, 081303(R) (2003).

    Article  ADS  Google Scholar 

  18. Scalari, G. et al. Terahertz emission from quantum cascade lasers in the quantum Hall regime: Evidence for many body resonances and localization effects. Phys. Rev. Lett. 93, 237403 (2004).

    Article  ADS  Google Scholar 

  19. Pere-Laperne, N. et al. Inter-Landau level scattering and LO-phonon emission in terahertz quantum cascade laser. Appl. Phys. Lett. 91, 062102 (2007).

    Article  ADS  Google Scholar 

  20. Becker, C. et al. Electron-longitudinal optical phonon interaction between Landau levels in semiconductor heterostructures. Phys. Rev. B 69, 115328 (2004).

    Article  ADS  Google Scholar 

  21. Kohen, S. et al. Electromagnetic modeling of terahertz quantum cascade laser waveguides and resonators. J. Appl. Phys. 97, 053106 (2005).

    Article  ADS  Google Scholar 

  22. Sirtori, C. et al. Dual-wavelength emission from optically cascaded intersubband transitions. Opt. Lett. 23, 463–465 (1998).

    Article  ADS  Google Scholar 

  23. Franz, I. et al. Evidence of cascaded emission in a dual-wavelength quantum cascade laser. Appl. Phys. Lett. 90, 091104 (2007).

    Article  ADS  Google Scholar 

  24. Williams, B. S. Terahertz quantum-cascade lasers. Nature Photon. 1, 517–525 (2007).

    Article  ADS  Google Scholar 

  25. Gmachl, C. et al. Recent progress in quantum cascade lasers and applications. Rep. Progr. Phys. 64, 1533–1601 (2001).

    Article  ADS  Google Scholar 

  26. Ulrich, J. et al. Magnetic-field-enhanced quantum-cascade emission. Appl. Phys. Lett. 76, 19–21 (2000).

    Article  ADS  Google Scholar 

  27. Blaser, S. et al. Terahertz intersubband emission in strong magnetic fields. Appl. Phys. Lett. 81, 67–69 (2002).

    Article  ADS  Google Scholar 

  28. Scalari G. et al. THz and sub-THz quantum cascade lasers. Laser Photon. Rev., accepted for publication, DOI: 10.1002/Ipor.200810030, 1–22 (2008).

Download references

Acknowledgements

The measurements were performed at the National High Magnetic Field Laboratory supported by the National Science Foundation Cooperative Agreement No. DMR-0084173, by the State of Florida, and by the Department of Energy. The work at Massachusetts Institute of Technology is supported by Air Force Office of Scientific Research, National Aeronautics and Space Administration, and National Science Foundation. Sandia is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Smirnov.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1732 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wade, A., Fedorov, G., Smirnov, D. et al. Magnetic-field-assisted terahertz quantum cascade laser operating up to 225 K. Nature Photon 3, 41–45 (2009). https://doi.org/10.1038/nphoton.2008.251

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.251

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing