Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High k-space lasing in a dual-wavelength quantum cascade laser

Abstract

The understanding of charge carrier distributions is fundamental to our knowledge of laser systems. In semiconductor lasers, because of the propensity of charge carriers to undergo extremely fast momentum relaxation1,2, they accumulate at band extrema—that is, they have a small wavevector close to k ≈ 0 in direct-gap semiconductors. Conventional understanding suggests that the device-level physics occurs at these band extrema, including population inversion for lasing. This behaviour is universal in diode lasers3,4, interband cascade lasers5 and quantum cascade lasers6,7. Here, we report on a quantum cascade laser with an energy configuration able to establish local population inversion high in k-space. We observe dual-wavelength emission from two discrete optical transitions. Temperature-dependent performance attributes show that the two transitions are highly coupled; competition for charge carriers is apparent from the anti correlated behaviour. The two optical transitions represent a conventional quantum cascade laser transition at k ≈ 0 and another laser transition from non-thermal electrons near k ≈ 3.6 × 108 m−1.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Excited-state QC laser band diagram and emission spectra.
Figure 2: Light output characteristics of a representative device.
Figure 3: Model results and k-space representation.
Figure 4: Spectral signature of k-space emission.

Similar content being viewed by others

References

  1. Rudin, S. & Reinecke, T. L. Electron LO-phonon scattering rates in semiconductor quantum wells. Phys. Rev. B 41, 7713–7717 (1990).

    Article  ADS  Google Scholar 

  2. Alcalde, A. M. & Weber, G. Nonparabolicity effects on electron-optical-phonon scattering rates in quantum wells. Phys. Rev. B 56, 9619–9624 (1997).

    Article  ADS  Google Scholar 

  3. Kroemer, H. Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks. Rev. Mod. Phys. 73, 783–793 (2001).

    Article  ADS  Google Scholar 

  4. Alferov, Z. I. Nobel Lecture: The double heterostructure concept and its applications in physics, electronics and technology. Rev. Mod. Phys. 73, 767–782 (2001).

    Article  ADS  Google Scholar 

  5. Olafsen, L. J., Vurgaftman, I. & Meyer, J. R. Long-Wavelength Infared Semiconductor Lasers (ed. Choi, H. K.) Ch. 3, 69–143 (Wiley, 2004).

    Google Scholar 

  6. Faist, J. et al. Quantum cascade laser. Science 264, 553–556 (1994).

    Article  ADS  Google Scholar 

  7. Gmachl, C., Capasso, F., Sivco, D. L. & Cho, A. Y. Recent progress in quantum cascade lasers and applications. Rep. Prog. Phys. 64, 1533–1601 (2001).

    Article  ADS  Google Scholar 

  8. Terazzi, R. et al. Bloch gain in quantum cascade lasers. Nature Phys. 3, 329–333 (2007).

    Article  ADS  Google Scholar 

  9. Revin, D. G. et al. Dispersive gain and loss in midinfrared quantum cascade laser. Appl. Phys. Lett. 92, 081110 (2008).

    Article  ADS  Google Scholar 

  10. Troccoli, M. et al. Raman injection laser. Nature 433, 845–848 (2005).

    Article  ADS  Google Scholar 

  11. Shastin, V. N. Hot hole inter-sub-band transition p-Ge FIR laser. Opt. Quantum Electron. 23, S111–S131 (1991).

    Article  Google Scholar 

  12. Bründermann, E. Long-Wavelength Infared Semiconductor Lasers (ed. Choi, H. K.) Ch. 6, 279–350 (Wiley, 2004).

    Google Scholar 

  13. Pinson, W. E. & Bray, R. Experimental determination of the energy distribution functions and analysis of the energy-loss mechanisms of hot carriers in p-type germanium. Phys. Rev. 136, A1449–A1466 (1964).

    Article  ADS  Google Scholar 

  14. Franz, K. J. et al. Evidence of cascaded emission in a dual-wavelength quantum cascade laser. Appl. Phys. Lett. 90, 091104 (2007).

    Article  ADS  Google Scholar 

  15. Sirtori, C. et al. Dual-wavelength emission from optically cascaded intersubband transitions. Opt. Lett. 23, 463–465 (1998).

    Article  ADS  Google Scholar 

  16. Scalari, G. et al. Electrically switchable, two-color quantum cascade laser emitting at 1.39 and 2.3 THz. Appl. Phys. Lett. 88, 141102 (2006).

    Article  ADS  Google Scholar 

  17. Serapiglia, G. B., Vodopyanov, K. L. & Phillips, C. C. Nonequilibrium electron distributions in a three-subband InGaAs/InAlAs quantum well studied via double resonance spectroscopy. Appl. Phys. Lett. 77, 857–859 (2000).

    Article  ADS  Google Scholar 

  18. Faist, J. et al. Quantum cascade lasers without intersubband population inversion. Phys. Rev. Lett. 76, 411–414 (1996).

    Article  ADS  Google Scholar 

  19. Faist, J. et al. Semiconductors and Semimetals (eds Liu, H. C. & Capasso, F.) Vol. 66, p. 36 (Academic Press, 2000).

    Google Scholar 

  20. Sze, S. Physics of Semiconductor Devices (John Wiley & Sons, 1981).

    Google Scholar 

  21. Sirtori, C., Capasso, F., Faist, J. & Scandolo, S. Nonparabolicity and a sum-rule associated with bound-to-bound and bound-to-continuum intersubband transitions in quantum-wells. Phys. Rev. B 50, 8663–8674 (1994).

    Article  ADS  Google Scholar 

  22. Ridley, B. K. Quantum Processes in Semiconductors 4th edn (Oxford Univ. Press, 1999).

    MATH  Google Scholar 

  23. Sinning, S. et al. Reduced subpicosecond electron relaxation in GaNxAs1–x . Appl. Phys. Lett. 86, 161912 (2005).

    Article  ADS  Google Scholar 

  24. Harrison, P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics of Semiconductor Nanostructures 2nd edn (Wiley, 2005).

    Book  Google Scholar 

  25. Bockelmann, U. & Bastard, G. Phonon scattering and energy relaxation in two-, one- and zero-dimensional electron gases. Phys. Rev. B 42, 8947–8951 (1990).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge helpful comments, advice and support from J. Chen, F.-S. Choa, S. R. Forrest, S. Gooding, K.-T. Shiu, I. Waldmueller and Y. Yao. This work was supported in part by the Mid-Infrared Technologies for Health and the Environment (MIRTHE) centre (NSF-ERC no. EEC-0540832) and the European Union Marie Curie Research Training Network Physics of Intersubband Semiconductor Emitters (POISE) programme. K.J.F. gratefully acknowledges the support of the National Science Foundation Graduate Research Fellowship Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kale J. Franz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Franz, K., Menzel, S., Hoffman, A. et al. High k-space lasing in a dual-wavelength quantum cascade laser. Nature Photon 3, 50–54 (2009). https://doi.org/10.1038/nphoton.2008.250

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.250

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing