Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Slow and fast light in optical fibres

Abstract

The ubiquitous role of optical fibres in modern photonic systems has stimulated research to realize slow and fast light devices directly in this close-to-perfect transmission line. Recent progress in developing optically controlled delays in optical fibres, operating under normal environmental conditions and at telecommunication wavelengths, has paved the way towards real applications for slow and fast light. This review presents the state-of-the-art research in this fascinating field and possible outcomes in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Principle of an all-optical fibre delay line based on SBS.
Figure 2: Pulse advancement and retardation through Brillouin-based slow- and fast-light effects in an optical fibre.
Figure 3: Examples of slow- and fast-light schemes based on SBS using natural and synthesized gain spectral distribution.
Figure 4: Advanced delay schemes obtained through the superposition of SBS gain and loss spectra generated by two distinct pumps separated in frequency by twice the Brillouin shift νB.
Figure 5: Experimental demonstration of the generation of efficient delays with a minor signal intensity change.

Similar content being viewed by others

References

  1. Krauss, T. Why do we need slow light? Nature Photon. 2, 448–450 (2008).

    Article  ADS  Google Scholar 

  2. Baba, T. Slow light in photonic crystals. Nature Photon. 2, 465–473 (2008).

    Article  ADS  Google Scholar 

  3. Hau, L. V., Harris, S. E., Dutton, Z. & Behroozi, C. H. Light speed reduction to 17 metres per second in an ultracold atomic gas. Nature 397, 594–598 (1999).

    Article  ADS  Google Scholar 

  4. Bigelow, M. S., Lepeshkin, N. N. & Boyd, R. W. Superluminal and slow light propagation in a room-temperature solid. Science 301, 200–202 (2003).

    Article  ADS  Google Scholar 

  5. Boyd, R. W. & Gauthier, D. J. in Progress in Optics Vol. 43 497–530 (Elsevier, Holland, 2002).

    Google Scholar 

  6. Xia, F., Sekaric, L. & Vlasov, Y. Ultracompact optical buffers on a silicon chip. Nature Photon. 1, 65–71 (2007).

    Article  ADS  Google Scholar 

  7. Boyd, R. W., Gauthier, D. J., Gaeta, A. L. & Willner, A. E. Maximum time delay achievable on propagation through a slow-light medium. Phys. Rev. A 71, 059903 (2005).

    Article  ADS  Google Scholar 

  8. Khurgin, J. B. Performance limits of delay lines based on optical amplifiers. Opt. Lett. 31, 948–950 (2006).

    Article  ADS  Google Scholar 

  9. Okawachi, Y. et al. Tunable all-optical delays via Brillouin slow light in an optical fiber. Phys. Rev. Lett. 94, 153902 (2005).

    Article  ADS  Google Scholar 

  10. Harris, S. E. Electromagnetically induced transparency. Phys. Today 50, 36–42 (1997).

    Article  Google Scholar 

  11. Boyd, R. W. Nonlinear Optics (Academic, New York, 2003).

    Google Scholar 

  12. Nikles, M., Thévenaz, L. & Robert, P. A. Brillouin gain spectrum characterization in single-mode optical fibers. J. Lightwave Technol. 15, 1842–1851 (1997).

    Article  ADS  Google Scholar 

  13. Agrawal, G. P. Nonlinear Fiber Optics (Academic, San Diego, 2006).

    MATH  Google Scholar 

  14. Mok, J. T. & Eggleton, B. J. Expect more delays. Nature 433, 811–812 (2005).

    Article  ADS  Google Scholar 

  15. Song, K. Y., González Herráez, M. & Thévenaz, L. Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering. Opt. Express 13, 82–88 (2005).

    Article  ADS  Google Scholar 

  16. Song, K. Y., González-Herráez, M. & Thévenaz, L. Long optically controlled delays in optical fibers. Opt. Lett. 30, 1782–1784 (2005).

    Article  ADS  Google Scholar 

  17. Zhu, Z. et al. Numerical study of all-optical slow-light delays via stimulated Brillouin scattering in an optical fiber. J. Opt. Soc. Am. B 22, 2378–2384 (2005).

    Article  ADS  Google Scholar 

  18. González-Herráez, M., Song, K. Y. & Thévenaz, L. Optically controlled slow and fast light in optical fibers using stimulated Brillouin scattering. Appl. Phys. Lett. 87, 081113 (2005).

    Article  ADS  Google Scholar 

  19. Brillouin, L. Über die Fortpflanzung des Lichtes in dispergierenden Medien. Ann. Phys. 44, 203–240 (1914).

    Article  Google Scholar 

  20. Brillouin, L. Wave Propagation and Group Velocity (Academic, New York, 1960).

    MATH  Google Scholar 

  21. Stenner, M. D., Gauthier, D. J. & Neifeld, M. A. The speed of information in a 'fast-light' optical medium. Nature 425, 695–698 (2003).

    Article  ADS  Google Scholar 

  22. Jauregui Misas, C., Petropoulos, P. & Richardson, D. J. Slowing of pulses to c/10 with subwatt power levels and low latency using Brillouin amplification in a bismuth-oxide optical fiber. J. Lightwave Technol. 25, 216–221 (2007).

    Article  ADS  Google Scholar 

  23. Florea, C. et al. Stimulated Brillouin scattering in single-mode As2S3 and As2Se3 chalcogenide fibers. Opt. Express 14, 12063–12070 (2006).

    Article  ADS  Google Scholar 

  24. Song, K. Y. et al. Highly efficient Brillouin slow and fast light using As2Se3 chalcogenide fiber. Opt. Express 14, 5860–5865 (2006).

    Article  ADS  Google Scholar 

  25. Sharping, J. E., Okawachi, Y. & Gaeta, A. L. Wide bandwidth slow light using a Raman fiber amplifier. Opt. Express 13, 6092–6098 (2005).

    Article  ADS  Google Scholar 

  26. Dahan, D. & Eisenstein, G. Tunable all optical delay via slow and fast light propagation in a Raman assisted fiber optical parametric amplifier: A route to all optical buffering. Opt. Express 13, 6234–6249 (2005).

    Article  ADS  Google Scholar 

  27. Shumakher, E. et al. Large tunable delay with low distortion of 10 Gbit/s data in a slow light system based on narrow band fiber parametric amplification. Opt. Express 14, 8540–8545 (2006).

    Article  ADS  Google Scholar 

  28. Schweinsberg, A. et al. Observation of superluminal and slow light propagation in erbium-doped optical fiber. Europhys. Lett. 73, 218–224 (2006).

    Article  ADS  Google Scholar 

  29. Gehring, G. M. et al. Observation of backward pulse propagation through a medium with a negative group velocity. Science 312, 895–897 (2006).

    Article  ADS  Google Scholar 

  30. Mok, J. T., de Sterke, C. M. & Eggleton, B. J. Delay-tunable gap-soliton-based slow-light system. Opt. Express 14, 11987–11996 (2006).

    Article  ADS  Google Scholar 

  31. Song, K. Y., González Herráez, M. & Thévenaz, L. Gain-assisted pulse advancement using single and double Brillouin gain peaks in optical fibers. Opt. Express 13, 9758–9765 (2005).

    Article  ADS  Google Scholar 

  32. Stenner, M. D. et al. Distortion management in slow-light pulse delay. Opt. Express 13, 9995–10002 (2005).

    Article  ADS  Google Scholar 

  33. Zhu, Z. M. & Gauthier, D. J. Nearly transparent SBS slow light in an optical fiber. Opt. Express 14, 7238–7245 (2006).

    Article  ADS  Google Scholar 

  34. Minardo, A., Bernini, R. & Zeni, L. Low distortion Brillouin slow light in optical fibers using AM modulation. Opt. Express 14, 5866–5876 (2006).

    Article  ADS  Google Scholar 

  35. Shi, Z. et al. Design of a tunable time-delay element using multiple gain lines for increased fractional delay with high data fidelity. Opt. Lett. 32, 1986–1988 (2007).

    Article  ADS  Google Scholar 

  36. González Herráez, M., Song, K. Y. & Thévenaz, L. Arbitrary-bandwidth Brillouin slow light in optical fibers. Opt. Express 14, 1395–1400 (2006).

    Article  ADS  Google Scholar 

  37. Zhu, Z. M. et al. Broadband SBS slow light in an optical fiber. J. Lightwave Technol. 25, 201–206 (2007).

    Article  ADS  Google Scholar 

  38. Zadok, A., Eyal, A. & Tur, M. Extended delay of broadband signals in stimulated Brillouin scattering slow light using synthesized pump chirp. Opt. Express 14, 8498–8505 (2006).

    Article  ADS  Google Scholar 

  39. Pant, R., Stenner, M. D., Neifeld, M. A. & Gauthier, D. J. Optimal pump profile designs for broadband SBS slow-light systems. Opt. Express 16, 2764–2777 (2008).

    Article  ADS  Google Scholar 

  40. Lu, Z., Dong, Y. & Li, Q. Slow light in multi-line Brillouin gain spectrum. Opt. Express 15, 1871–1877 (2007).

    Article  ADS  Google Scholar 

  41. Yi, L. et al. Improved slow-light performance of 10 Gb/s NRZ, PSBT and DPSK signals in fiberbroadband SBS. Opt. Express 15, 16972–16979 (2007).

    Article  ADS  Google Scholar 

  42. Jáuregui, C., Petropoulos, P. & Richardson, D. J. in Optical Fiber Communication Conference, San Diego, California, OSA Technical Digest (CD) OMH3 (Optical Society of America, 2008).

    Google Scholar 

  43. Song, K. Y. & Hotate, K. 25 GHz bandwidth Brillouin slow light in optical fibers. Opt. Lett. 32, 217–219 (2007).

    Article  ADS  Google Scholar 

  44. Chin, S., González Herráez, M. & Thévenaz, L. Zero-gain slow & fast light propagation in an optical fiber. Opt. Express 14, 10684–10692 (2006).

    Article  ADS  Google Scholar 

  45. Schneider, T., Henker, R., Lauterbach, K. U. & Junker, M. Comparison of delay enhancement mechanisms for SBS-based slow light systems. Opt. Express 15, 9606–9613 (2007).

    Article  ADS  Google Scholar 

  46. Chin, S. H., González Herráez, M. & Thévenaz, L. Self-induced fast light propagation in an optical fiber based on Brillouin scattering. Opt. Express (in the press).

  47. Tucker, R. S., Ku, P. C. & Chang-Hasnain, C. J. Slow-light optical buffers: Capabilities and fundamental limitations. J. Lightwave Technol. 23, 4046–4066 (2005).

    Article  ADS  Google Scholar 

  48. Khurgin, J. B. Power dissipation in slow light devices: A comparative analysis. Opt. Lett. 32, 163–165 (2007).

    Article  ADS  Google Scholar 

  49. Khurgin, J. B. in Optical Amplifiers and Their Applications/Coherent Optical Technologies and Applications, Anaheim, California, OSA Technical Digest (CD) CThD3 (Optical Society of America, 2006).

    Google Scholar 

  50. Khurgin, J. B. Optical buffers based on slow light in electromagnetically induced transparent media and coupled resonator structures: Comparative analysis. J. Opt. Soc. Am. B 22, 1062–1074 (2005).

    Article  ADS  Google Scholar 

  51. Boyd, R. W., Gauthier, D. J. & Gaeta, A. L. Applications of slow light in telecommunications. Opt. Photon. News 17, 18–23 (2006).

    Article  ADS  Google Scholar 

  52. Sharping, J. et al. All-optical, wavelength and bandwidth preserving, pulse delay based on parametric wavelength conversion and dispersion. Opt. Express 13, 7872–7877 (2005).

    Article  ADS  Google Scholar 

  53. Okawachi, Y., Sharping, J. E., Xu, C. & Gaeta, A. L. Large tunable optical delays via self-phase modulation and dispersion. Opt. Express 14, 12022–12027 (2006).

    Article  ADS  Google Scholar 

  54. Okawachi, Y., Salem, R. & Gaeta, A. L. Continuous tunable delays at 10-Gb/s data rates using self-phase modulation and dispersion. J. Lightwave Technol. 25, 3710–3715 (2007).

    Article  ADS  Google Scholar 

  55. Zhu, Z. M., Gauthier, D. J. & Boyd, R. W. Stored light in an optical fiber via stimulated Brillouin scattering. Science 318, 1748–1750 (2007).

    Article  ADS  Google Scholar 

  56. Zhang, B. et al. Continuously-tunable, bit-rate variable OTDM using broadband SBS slow-light delay line. Opt. Express 15, 8317–8322 (2007).

    Article  ADS  Google Scholar 

  57. Capmany, J. & Novak, D. Microwave photonics combines two worlds. Nature Photon. 1, 319–330 (2007).

    Article  ADS  Google Scholar 

  58. Soljačić, M. et al. Photonic-crystal slow-light enhancement of nonlinear phase sensitivity. J. Opt. Soc. Am. B 19, 2052–2059 (2002).

    Article  ADS  Google Scholar 

  59. Soljačić, M. & Joannopoulos, J. D. Enhancement of nonlinear effects using photonic crystals. Nature Mater. 3, 211–219 (2004).

    Article  ADS  Google Scholar 

  60. Matsko, A. B., Rostovtsev, Y. V., Cummins, H. Z. & Scully, M. O. Using slow light to enhance acousto-optical effects: Application to squeezed light. Phys. Rev. Lett. 84, 5752–5755 (2000).

    Article  ADS  Google Scholar 

  61. Kash, M. M. et al. Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas. Phys. Rev. Lett. 82, 5229–5232 (1999).

    Article  ADS  Google Scholar 

  62. Shi, Z. et al. Slow-light Fourier transform interferometer. Phys. Rev. Lett. 99, 240801 (2007).

    Article  ADS  Google Scholar 

  63. Shi, Z. M., Boyd, R. W., Gauthier, D. J. & Dudley, C. C. Enhancing the spectral sensitivity of interferometers using slow-light media. Opt. Lett. 32, 915–917 (2007).

    Article  ADS  Google Scholar 

  64. Terrel, M. A., Digonnet, M. J. F. & Fan, S. H. Performance limitation of a coupled resonant optical waveguide gyroscope. J. Lightwave Technol. (in the press).

  65. Digonnet, M. J. F. New technologies in fiber sensors. in CLEO/Europe and IQEC 2007 Conference Digest CH2_1 (Optical Society of America, 2007).

    Google Scholar 

  66. González-Herráez, M., Esteban, O., Naranjo, F. B. & Thévenaz, L. in Third European Workshop on Optical Fibre Sensors, Napoli, Italy, SPIE Proc. 6619, 661937–4 (SPIE, 2007).

    Book  Google Scholar 

  67. Thévenaz, L., Song, K.-Y., Chin, S.-H. & Gonzalez-Herraez, M. in IEEE Int. Symposium Workshop on Intelligent Signal Processing, Madrid, Spain (2007)

    Google Scholar 

Download references

Acknowledgements

The author gratefully acknowledges the essential contributions of M. González-Herráez, K.Y. Song and S.H. Chin through fruitful discussions and by experimental realizations, and the support of the Swiss National Science Foundation through project 200021-109773.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thévenaz, L. Slow and fast light in optical fibres. Nature Photon 2, 474–481 (2008). https://doi.org/10.1038/nphoton.2008.147

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.147

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing