Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace

Abstract

Efficient and faithful implementation of quantum information tasks, such as quantum computing, quantum communication and quantum metrology1,2,3, requires robust and state-independent decoherence-suppressing measures to protect the quantum information carriers. Here we present an experimental demonstration of a robust distribution scheme in which one photon of an entangled photon pair is successfully encoded into and decoded from a decoherence-free subspace by a state-independent scheme. We achieved a high-fidelity distribution of the entangled state over a fibre communication channel, and also demonstrated that the scheme is robust against fragility of the reference frame. The scheme, thanks to its state-independence, is also applicable to the multipartite case where the photon to be distributed is entangled with many other photons. Such a robust and universal scheme for distributing quantum information in an indeterministic but conclusive manner will constitute an important building block of quantum communication and computing networks.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental setup.
Figure 2: The density matrices estimated using quantum state tomography.
Figure 3: Robustness of the scheme against path-length mismatch.

Similar content being viewed by others

References

  1. Bennett, C. & DiVicenzo, D. Quantum information and computation. Nature 404, 247–255 (2000).

    Article  ADS  Google Scholar 

  2. Gisin, N., & Thew, R. Quantum communication. Nature Photonics 1, 165–171 (2007).

    Article  ADS  Google Scholar 

  3. Giovannetti, V. Loyd, S. & Maccone, L. Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330–1336 (2004).

    Article  ADS  Google Scholar 

  4. Lidar, D. A. & Whaley, K. B. Decoherence-free subspaces and subsystems in Irreversible Quantum Dynamics, Springer Lecture Notes in Physics, Vol. 622 (eds Benatti, F. & Floreanini, R.) 83–120 (Springer, Berlin, 2003).

    Chapter  Google Scholar 

  5. Kwiat, P. G., Berglund, A. J., Altepeter, J. B. & White, A. G. Experimental verification of decoherence-free subspaces. Science 290, 498–501 (2000).

    Article  ADS  Google Scholar 

  6. Kielpinski, D. et al. A decoherence-free quantum memory using trapped ions. Science 291, 1013–1015 (2001).

    Article  ADS  Google Scholar 

  7. Viola, L. et al. Experimental realization of noiseless subsystems for quantum information processing. Science 293, 2059–2063 (2001).

    Article  ADS  Google Scholar 

  8. Ollerenshaw, J. E., Lidar, D. A. & Kay, L. E. Magnetic resonance realization of decoherence-free quantum computation. Phys. Rev. Lett. 91, 217904 (2003).

    Article  ADS  Google Scholar 

  9. Mohseni, M., Lundeen, J. S., Resch, K. J. & Steinberg, A. M. Experimental application of decoherence-free subspaces in an optical quantum-computing algorithm. Phys. Rev. Lett. 91, 187903 (2003).

    Article  ADS  Google Scholar 

  10. Bourennane, M. et al. Decoherence-free quantum information processing with four-photon entangled states. Phys. Rev. Lett. 92, 107901 (2004).

    Article  ADS  Google Scholar 

  11. Banaszek, K., Dragan, A., Wasilewski, W. & Radzewicz, C. Experimental demonstration of entanglement-enhanced classical communication over a quantum channel with correlated noise. Phys. Rev. Lett. 92, 257901 (2004).

    Article  ADS  Google Scholar 

  12. Roos, C. F., Chwalla, M., Kim, K., Riebe, M. & Blatt, R. ‘Designer’ atoms for quantum metrology. Nature 443, 316–319 (2006).

    Article  ADS  Google Scholar 

  13. Chen, T.-Y. et al. Experimental quantum communication without a shared reference frame. Phys. Rev. Lett. 96, 150504 (2006).

    Article  ADS  Google Scholar 

  14. Yamamoto, T. et al. Experimental ancilla-assisted qubit transmission against correlated noise using quantum parity checking. New J. Phys. 9, 191 (2007).

    Article  ADS  Google Scholar 

  15. Prevedel R. et al. Experimental demonstration of decoherence-free one-way information transfer. Phys. Rev. Lett. 99, 250503 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  16. Walton, Z. D., Abouraddy, A. F., Sergienko, A. V., Saleh, B. E. A. & Teich, M. C. Decoherence-free subspaces in quantum key distribution. Phys. Rev. Lett. 91, 087901 (2003).

    Article  ADS  Google Scholar 

  17. Boileau, J.-C., Laflamme, R., Laforest, M. & Myers, C. R. Robust quantum communication using a polarization-entangled photon pair. Phys. Rev. Lett. 93, 220501 (2004).

    Article  ADS  Google Scholar 

  18. Yamamoto, T., Shimamura, J., Özdemir, Ş. K., Koashi, M. & Imoto, N. Faithful qubit distribution assisted by one additional qubit against collective noise. Phys. Rev. Lett. 95, 040503 (2005).

    Article  ADS  Google Scholar 

  19. Pittman, T. B., Jacobs, B. C. & Franson, J. D. Probabilistic quantum logic operations using polarizing beam splitters. Phys. Rev. A 64, 062311 (2001).

    Article  ADS  Google Scholar 

  20. Ralph, T. C., Hayes, A. J. F. & Gilchrist A. Loss-tolerant optical qubits. Phys. Rev. Lett. 95, 100501 (2005).

    Article  ADS  Google Scholar 

  21. Knill, E., Laflamme, R. & Milburn, G. J. A scheme for efficient quantum computation with linear optics. Nature 409, 46–52 (2001).

    Article  ADS  Google Scholar 

  22. Pryde, G. J., O'Brien, J. L., White, A. G. & Bartlett, S. D. Demonstrating superior discrimination of locally prepared states using nonlocal measurements. Phys. Rev. Lett. 94, 220406 (2005).

    Article  ADS  Google Scholar 

  23. Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    Article  ADS  Google Scholar 

  24. James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    Article  ADS  Google Scholar 

  25. Beugnon, J. et al. Quantum interference between two single photons emitted by independently trapped atoms. Nature 440, 779–782 (2006).

    Article  ADS  Google Scholar 

  26. Moehring, D. L. et. al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    Article  ADS  Google Scholar 

  27. Bartlett, S. D., Rudolph, T. & Spekkens, R. W. Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555–609 (2007).

    Article  ADS  MathSciNet  Google Scholar 

  28. Kim, Y. H., Kulik, S. P. & Shih, Y. High-intensity pulsed source of space–time and polarization double-entangled photon pairs. Phys. Rev. A 62, 011802(R) (2000).

    Article  ADS  Google Scholar 

  29. Yamamoto, T., Koashi, M., Özdemir, Ş.K. & Imoto, N. Experimental extraction of an entangled photon pair from two identically decohered pairs. Nature 421, 343–346 (2003).

  30. Wootters, W. K. Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific Research(C)20540389 and the Ministry of Education, Culture, Sports, Science and Technology-Japan (MEXT) Grant-in-Aid for Young scientists(B) 20740232.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nobuyuki Imoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, T., Hayashi, K., Özdemir, Ş. et al. Robust photonic entanglement distribution by state-independent encoding onto decoherence-free subspace. Nature Photon 2, 488–491 (2008). https://doi.org/10.1038/nphoton.2008.130

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.130

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing