Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Incoherent spatial solitons in effectively instantaneous nonlinear media

Abstract

Incoherent optical spatial solitons are self-trapped beams with a multimodal structure that varies randomly in time. They form when their diffraction-broadening, which is governed by their spatial correlations, is balanced by nonlinear interaction between the waves and the medium, resulting in the stationary propagation of the time-averaged intensity structure of the beam. The experimental observation of incoherent solitons has opened up exciting new avenues in soliton science. However, all incoherent spatial solitons observed to date have been supported by nonlinearities with a slow response time, τ, that is much longer than the characteristic fluctuation time of the beam, tc τ. Here, we demonstrate incoherent solitons in effectively instantaneous nonlocal nonlinear media where τ tc. These solitons exhibit fundamentally new features (for example, propagation at random trajectories), and can be created in various optically nonlinear media, as well as in other fields where the nonlinearity is nonlocal and very fast.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Self-trapping of bimodal beams composed of consecutive modes.
Figure 2: Self-trapping of bimodal beams composed of non-consecutive modes.
Figure 3: Incoherent solitons in effectively instantaneous nonlocal, nonlinear media.
Figure 4: Existence curve of incoherent solitons in instantaneous nonlocal media.

Similar content being viewed by others

References

  1. Stegeman, G. I. & Segev, M. Optical spatial solitons and their interactions: Universality and diversity. Science 286, 1518–1523 (1999).

    Article  Google Scholar 

  2. Mitchell, M., Chen, Z., Shih, M. & Segev, M. Self-trapping of partially spatially incoherent light. Phys. Rev. Lett. 77, 490–493 (1996).

    Article  ADS  Google Scholar 

  3. Mitchell, M. & Segev, M. Self-trapping of incoherent white light. Nature 387, 880–883 (1997).

    Article  ADS  Google Scholar 

  4. Chen, Z. et al. Self-trapping of dark incoherent light beams. Science 280, 889–892 (1998).

    Article  ADS  Google Scholar 

  5. Peccianti. M. & Assanto. G. Incoherent spatial solitary waves in nematic liquid crystals. Opt. Lett. 26, 1791–1793 (2001).

    Article  ADS  Google Scholar 

  6. Buljan, H. et al. Random-phase solitons in nonlinear periodic lattices. Phys. Rev. Lett. 92, 223901 (2004).

    Article  ADS  Google Scholar 

  7. Cohen, O. et al. Observation of random-phase lattice solitons. Nature 433, 500–503 (2005).

    Article  ADS  Google Scholar 

  8. Soljacic, M. et al. Modulation instability of incoherent beams in noninstantaneous nonlinear media. Phys. Rev. Lett. 84, 467–470 (2000).

    Article  ADS  MathSciNet  Google Scholar 

  9. Kip, D., Soljacic, M., Segev, M., Eugenieva, E. & Christodoulides, D. N. Modulation instability and pattern formation in spatially incoherent light beams. Science 290, 495–498 (2000).

    Article  ADS  Google Scholar 

  10. Buljan, H., Šiber, A., Soljacic, M. & Segev, M. Propagation of incoherent ‘white’ light and modulation instability in noninstantaneous nonlinear media. Phys. Rev. E 66, 035601 (2002).

    Article  ADS  Google Scholar 

  11. Schwartz, T., Carmon, T., Buljan, H. & Segev, M. Spontaneous pattern formation with incoherent white light. Phys. Rev. Lett. 93, 223901 (2004).

    Article  ADS  Google Scholar 

  12. Buljan, H., Segev, M. & Vardi, A. Incoherent matter-wave solitons and pairing instability in an attractively interacting Bose–Einstein condensate. Phys. Rev. Lett. 95, 180401 (2005).

    Article  ADS  Google Scholar 

  13. Wu., M., Krivosik. P., Kalinikos, B. A. & Patton, C. E. Random generation of coherent solitary waves from incoherent waves. Phys. Rev. Lett. 96, 227202 (2006).

    Article  ADS  Google Scholar 

  14. Hasegawa, A. Dynamics of an ensemble of plane waves in nonlinear dispersive media. Phys. Fluids 18, 77–78 (1975).

    Article  ADS  Google Scholar 

  15. Mitchell, M., Segev, M., Coskun, T. H. & Christodoulides, D. N. Theory of self-trapped spatially incoherent light beams. Phys. Rev. Lett. 79, 4990–4993 (1997).

    Article  ADS  Google Scholar 

  16. Christodoulides, D. N., Coskun, T. H., Mitchell, M. & Segev, M. Theory of incoherent self-focusing in biased photorefractive media. Phys. Rev. Lett. 78, 646–649 (1997).

    Article  ADS  Google Scholar 

  17. Snyder, A. W. & Mitchell, D. J. Big incoherent solitons. Phys. Rev. Lett. 80, 1422–1424 (1998).

    Article  ADS  Google Scholar 

  18. Shkunov, V. V. & Anderson, D. Z. Radiation transfer model of self-trapping spatially incoherent radiation by nonlinear media. Phys. Rev. Lett. 81, 2683–2686 (1998).

    Article  ADS  Google Scholar 

  19. Buljan, H., Segev, M., Soljačić, M., Efremidis, N. N. & Christodoulides, D. N. White-light solitons. Opt. Lett. 28, 1239–1241 (2003).

    Article  ADS  Google Scholar 

  20. Cohen, O., Buljan, H., Schwartz, T., Fleischer, J. W. & Segev, M. Incoherent solitons in instantaneous nonlocal nonlinear media. Phys. Rev. E 73, 015601 (2006).

    Article  ADS  Google Scholar 

  21. Ultanir, E. A., Stegeman, G. I., Michaelis, D., Lange, C. H. & Lederer, F. Stable dissipative solitons in semiconductor optical amplifiers. Phys. Rev. Lett. 90, 253903 (2003).

    Article  ADS  Google Scholar 

  22. Rotschild, C., Cohen, O., Manela, O., Segev, M. & Carmon, T. Solitons in nonlinear media with an infinite range of nonlocality: First observation of coherent elliptic solitons and of vortex-ring solitons. Phys. Rev. Lett. 95, 213904 (2005).

    Article  ADS  Google Scholar 

  23. Rotschild, C., Alfassi, B., Cohen, O. & Segev, M. Long-range interactions between optical solitons. Nature Phys. 2, 769–774 (2006).

    Article  ADS  Google Scholar 

  24. Dabby, F. W. & Whinnery, J. R. Thermal self-focusing of laser beams in lead glasses. Appl. Phys. Lett. 13, 284–286 (1968).

    Article  ADS  Google Scholar 

  25. Litvak, A. G. Self-focusing of powerful light beams by thermal effects. JETP Lett. 4, 230–233 (1966).

    ADS  Google Scholar 

  26. Suter, D. & Blasberg, T. Stabilization of transverse solitary waves by a nonlocal response of the nonlinear medium. Phys. Rev. A 48, 4583–4587 (1993).

    Article  ADS  Google Scholar 

  27. Segev, M., Crosignani, B., Yariv, A. & Fischer, B. Spatial solitons in photorefractive media. Phys. Rev. Lett. 68, 923–926 (1992).

    Article  ADS  Google Scholar 

  28. Conti, C., Peccianti, M. & Assanto, G. Route to nonlocality and observation of accessible solitons. Phys. Rev. Lett. 91, 073901 (2003).

    Article  ADS  Google Scholar 

  29. Conti, C., Peccianti, M. & Assanto, G. Observation of optical spatial solitons in a highly nonlocal medium. Phys. Rev. Lett. 92, 113902 (2004).

    Article  ADS  Google Scholar 

  30. Griesmaier, A., Werner, J., Hensler, S., Stuhler, J. & Pfau, T. Bose–Einstein condensation of chromium. Phys. Rev. Lett. 94, 160401 (2005).

    Article  ADS  Google Scholar 

  31. Lahaye, T. et al. Stabilization of a purely dipolar quantum gas against collapse. Nature 448, 672–675 (2007).

    Article  ADS  Google Scholar 

  32. Pecseli, H. L. & Rasmussen, J. J. Nonlinear electron waves in strongly magnetized plasmas. Plasma Phys. 22, 421–438 (1980).

    Article  ADS  Google Scholar 

  33. Rao, N. N. & Shukla, P. K. Triple-hump upper-hybrid solitons. Phys. Scripta. T82, 53–59 (1999).

    Article  ADS  Google Scholar 

  34. Litvak, A. G., Mironov, V. A., Fraiman, G. M. & Yunakovskii, A. D. Thermal self-effect of wave beams in a plasma with a nonlocal nonlinearity. Fiz. Plazmy 1, 60–71 (1975).

    ADS  Google Scholar 

  35. Turitsyn, S. K. Spatial dispersion of nonlinearity and stability of multidimensional solitons. Theor. Math. Phys. 64, 226–232 (1985).

    Article  Google Scholar 

  36. Krolikowski, W. & Bang, O. Solitons in nonlocal nonlinear media: Exact solutions. Phys. Rev. E 63, 016610 (2000).

    Article  ADS  Google Scholar 

  37. Xu, Z., Kartashov, Y. V. & Torner, L. Upper threshold for stability of multipole-mode solitons in nonlocal nonlinear media. Opt. Lett. 30, 3171–3173 (2005).

    Article  ADS  Google Scholar 

  38. Hutsebaut, X., Cambournac, C., Haelterman, M., Adamski, A. & Neyts, K. Single-component higher-order mode solitons in liquid crystals. Opt. Commun. 233, 211–217 (2004).

    Article  ADS  Google Scholar 

  39. Rotschild, C. et al. Two-dimensional multipole solitons in nonlocal nonlinear media, Opt. Lett. 31, 3312–3314 (2006).

    Article  ADS  Google Scholar 

  40. Snyder, A. W. & Mitchell, D. J. Accessible solitons. Science 276, 1538–1541 (1997).

    Article  Google Scholar 

  41. Mandel, L. & Wolf, E. Optical Coherence and Quantum Optics (Cambridge Univ. Press, 1995).

    Book  Google Scholar 

  42. Mitchell, M., Segev, M. D. & Christodoulides, N. Observation of multihump multimode solitons. Phys. Rev. Lett. 80, 4657–4660 (1998).

    Article  ADS  Google Scholar 

  43. Bertolotti, M., Daino, B., Gori, F. & Sette, D. Coherence properties of a laser beam. Nuov. Cim. 38, 1505–1514 (1965).

    Article  Google Scholar 

  44. Kip, D., Anastassion, C., Eugenieva, E. & Christodoulides, D. N. Transmission of images through highly nonlinear media by gradient-index lenses formed by incoherent solitons. Opt.Lett. 26, 524–526 (2001).

    Article  ADS  Google Scholar 

  45. Ablowitz, M. J. & Segur, H. Solitons and the Inverse Scattering Transform (Society for Industrial and Applied Mathematics, Philadelphia, PA, 1981).

    Book  Google Scholar 

  46. Kaminer, I., Rotschild, C., Manela, O. & Segev, M. Periodic solitons in nonlocal nonlinear media. Opt. Lett. 32, 3209–3211 (2007).

    Article  ADS  Google Scholar 

  47. Tikhonenkov, I., Malomed, B. A. & Vardi, A. Anisotropic solitons in dipolar Bose–Einstein condensates. Phys. Rev. Lett. 100, 090406 (2008).

    Article  ADS  Google Scholar 

  48. Iturbe-Castillo, M. D., Sánchez-Mondragón, J. J. & Stepanov, S. Formation of steady-state cylindrical thermal lenses in dark stripes. Opt. Lett. 21, 1622–1624 (1996).

    Article  ADS  Google Scholar 

  49. Alfassi, B., Rotschild, C., Manela, O., Christodoulides, D. N. & Segev, M. Boundary force effects extracted on solitons in nonlinear media with a very large range of nonlocality. Opt. Lett. 32, 154–156 (2007).

    Article  ADS  Google Scholar 

  50. Snyder, A. W., Mitchell, D. J., Poladian, L. & Ladouceur, F. Self-induced optical fibers: Spatial solitary waves. Opt. Lett. 16, 21–23 (1991).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Israeli Science Foundation. C.R. gratefully acknowledges the generous support of the ADAMS fellowship of the Israeli Academy of Arts and Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mordechai Segev.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rotschild, C., Schwartz, T., Cohen, O. et al. Incoherent spatial solitons in effectively instantaneous nonlinear media. Nature Photon 2, 371–376 (2008). https://doi.org/10.1038/nphoton.2008.81

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.81

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing