Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ultraviolet light-emitting diodes based on group three nitrides

Abstract

Light-emitting diodes with emission wavelengths less than 400 nm have been developed using the AlInGaN material system. For devices operating at shorter wavelengths, alloy compositions with a greater aluminium content are required. The material properties of these materials lie on the border between conventional semiconductors and insulators, which adds a degree of complexity to the development of efficient light-emitting devices. A number of technical developments have enabled the fabrication of LEDs based on group three nitrides (III-nitrides) that emit in the UV part of the spectrum, providing useful tools for a wealth of applications in optoelectronic systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Crack-free AlGaN growth using an AlxGaN/AlyGaN strain-relief SL.

© 2002 AIP © 2005 AIP

Figure 2: A micro-pixel UV LED.
Figure 3: Flip-chip UV LED.

© 2002 AIP

Figure 4: External quantum efficiency.

Similar content being viewed by others

References

  1. Morkoc, H. Handbook of Nitride Semiconductors and Devices Vol. 1 (Springer, 2007).

    Google Scholar 

  2. Amano, H., Sawaki, N., Akasaki, I. & Toyoda, Y. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer. Appl. Phys. Lett. 48, 353–355 (1986).

    ADS  Google Scholar 

  3. Nakamura, S. GaN growth using GaN buffer layer. Jpn J. Appl. Phys. 30, L1705–L1707 (1991).

    ADS  Google Scholar 

  4. Amano, H., Kito, M., Hiramatsu, K. & Akasaki, I. P-type conduction in Mg-doped GaN treated with low-energy electron beam irradiation (LEEBI). Jpn J. Appl. Phys. 28, L2112–L2114 (1989).

    ADS  Google Scholar 

  5. Nakamura, S., Mukai, T., Senoh, M. & Iwasa, N. Thermal annealing effects on p-type Mg-doped GaN films. Jpn J. Appl. Phys. 31, L139–L142 (1992).

    ADS  Google Scholar 

  6. Razeghi, M. & Henini, M. Optoelectronic devices: III-nitrides 1–9 (Elsevier, Oxford, 2004).

    Google Scholar 

  7. Mukai, T., Nagahama, S., Iwasa, N., Senoh, M. & Yamada, T. Nitride light-emitting diodes. J. Phys.: Condens. Matter 13, 7089–7098 (2001).

    ADS  Google Scholar 

  8. Akita, K., Kyono, T., Yoshizumi, Y., Kitabayashi, H. & Katayama, K. Characteristics of InGaN light-emitting diodes on GaN substrates with low threading dislocation densities. Phys. Status Solidi a 204, 246–250 (2007).

    ADS  Google Scholar 

  9. Morita, D. et al. High output power 365 nm ultraviolet light emitting diode of GaN-free structure. Jpn J. Appl. Phys. 41, L1434–L1436 (2002).

    ADS  Google Scholar 

  10. Mukai, T. et al. Investigation of optical-output-power degradation in 365-nm UV-LEDs. Phys. Status Solidi c 3, 2211–2214 (2005).

    ADS  Google Scholar 

  11. Khan, M. A., Skogman, R. A., Van Hove, G. M., Krishnankutty, S. & Kolbas, R. M. Photoluminescence characteristics of AlGaN-GaN-AlGaN quantum wells. Appl. Phys. Lett. 56, 1257–1259 (1990).

    ADS  Google Scholar 

  12. Han, J. et al. AlGaN/GaN quantum well ultraviolet light emitting diodes. Appl. Phys. Lett. 73, 1688–1690 (1998).

    ADS  Google Scholar 

  13. Nishida, T. & Kobayashi, N. 346 nm emission from AlGaN multi-quantum-well light emitting diode. Phys. Status Solidi a 176, 45–48 (1999).

    ADS  Google Scholar 

  14. Otsuka, N. et al. Room temperature 339 nm emission from Al0.13Ga0.87N/ Al0.10Ga0.90N double heterostructure light-emitting diode on sapphire substrate. Jpn J. Appl. Phys. 39, L445–L448 (2000).

    ADS  Google Scholar 

  15. Khan, M. A. et al. Lattice and energy band engineering in AlInGaN/GaN heterostructures. Appl. Phys. Lett. 76, 1161–1163 (2000).

    ADS  Google Scholar 

  16. Khan, M. A. et al. Stripe geometry ultraviolet light emitting diodes at 305 nanometers using quaternary AlInGaN multiple quantum wells. Jpn J. Appl. Phys. 40, L1308–L1310 (2001).

    ADS  Google Scholar 

  17. Kinoshita, A., Hirayama, H., Ainoya, M., Aoyagi, Y. & Hirata, A. Room-temperature operation at 333 nm of Al0.03Ga0.97N/Al0.25Ga0.75N quantum-well light-emitting diodes with Mg-doped superlattice layers. Appl. Phys. Lett. 77, 175–177 (2000).

    ADS  Google Scholar 

  18. Nishida, T., Saito, H., Kumakura, K., Makimoto, T. & Kobayashi, H. Proceedings of International Workshop on Nitride Semiconductors (IWN 2000), IPAP Conference Series 1 725–727 (2000).

    Google Scholar 

  19. Lefebvre, P. et al. Quantum-confined Stark effect and recombination dynamics of spatially indirect excitons in MBE-grown GaN-AlGaN quantum wells. MRS Int. J. Nitrogen Semiconductor Res. 4S1, G3.69 (1999).

    Google Scholar 

  20. Waltereit, P. et al. Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes. Nature 406, 865–868 (2000).

    ADS  Google Scholar 

  21. Bernardini, F., Fiorentini, V. & Vanderbilt, D. Spontaneous polarization and piezoelectric constants of III-V nitrides. Phys. Rev. B. 56, R10024–R10027 (1997).

    ADS  Google Scholar 

  22. Smeeton, T. M., Humphreys, C. J., Barnard, J. S. & Kappers, M. J. The impact of electron beam damage on the detection of indium-rich localization centres in InGaN quantum wells using transmission electron microscopy. J. Mater. Sci. 41, 2729–2737 (2006).

    ADS  Google Scholar 

  23. Motoki, K. et al. Preparation of large freestanding GaN substrates by hydride vapor phase epitaxy using GaAs as a starting substrate. Jpn J. Appl. Phys. 40, L140–L143 (2001).

    ADS  Google Scholar 

  24. Edmond, J. et al. High efficiency GaN-based LEDs and lasers on SiC. J. Crystal Growth 272, 242–250 (2004).

    ADS  Google Scholar 

  25. Jeon, S. R. et al. High performance AlGaInN ultraviolet light-emitting diode at the 340 nm wavelength. Jpn J. Appl. Phys. 43, L1409–L1412 (2004).

    ADS  Google Scholar 

  26. Jeys, T. H., Desmarais, L., Lynch, E. J. & Ochoa, J. R. Development of a UV-LED-based biosensor Proc. SPIE 5071, 234–240 (2003).

    ADS  Google Scholar 

  27. Imura, M. et al. Dislocations in AlN epilayers grown on sapphire substrate by high-temperature metal-organic vapor phase epitaxy. Jpn J. Appl. Phys. 46, 1458–1462 (2007).

    ADS  Google Scholar 

  28. Ohba, Y. & Sato, R. Growth of AlN on sapphire substrates by using a thin AlN buffer layer grown two-dimensionally at a very low V/III ratio. J. Crystal Growth. 221, 258–261 (2000).

    ADS  Google Scholar 

  29. Khan, M. A., Kuzina, J. N., Olson, D. T., George, T. & Pike, W. T. GaN/AlN digital alloy short-period superlattices by switched atomic layer metalorganic chemical vapor deposition. Appl. Phys. Lett. 63, 3470–3472 (1993).

    ADS  Google Scholar 

  30. Balakrishnan, K. et al. Influence of high temperature in the growth of low dislocation content AlN bridge layers on patterned 6H-SiC substrates by metalorganic vapor phase epitaxy. Jpn J. Appl. Phys. 46, L307–L310 (2007).

    Google Scholar 

  31. Chen, Z. et al. Pulsed lateral epitaxial overgrowth of aluminum nitride on sapphire substrates. Appl. Phys. Lett. 89, 081905 (2006).

    ADS  Google Scholar 

  32. Imura, M. et al. Microstructure of epitaxial lateral overgrown AlN on trench-patterned AlN template by high-temperature metal-organic vapor phase epitaxy. Appl. Phys. Lett. 89, 221901 (2006).

    ADS  Google Scholar 

  33. Kamiyama, S. et al. Low-temperature-deposited AlGaN interlayer for improvement of AlGaN/GaN heterostructure. J. Crystal Growth 223, 83–91 (2001).

    ADS  Google Scholar 

  34. Han, J. et al. Control and elimination of cracking of AlGaN using low-temperature AlGaN interlayers. Appl. Phys. Lett. 78, 67–69 (2001).

    ADS  Google Scholar 

  35. Jain, S. C., Willander, M., Narayan, J. & Overstraeten, R. III–nitrides: growth, characterization, and properties. J. Appl. Phys. 87, 965–1006 (2000).

    ADS  Google Scholar 

  36. Bykhovski, A. D., Gelmont, B. L. & Shur, M. S. Elastic strain relaxation and piezoeffect in GaN-AlN, GaN-AlGaN and GaN-InGaN superlattices. J. Appl. Phys. 81, 6332–6338 (1997).

    ADS  Google Scholar 

  37. Zhang, J. P. et al. Crack-free thick AlGaN grown on sapphire using AlN/AlGaN superlattices for strain management. Appl. Phys. Lett. 80, 3542–3544 (2002).

    ADS  Google Scholar 

  38. Wang, H. M. et al. AlN/AlGaN superlattices as dislocation filter for low-threading-dislocation thick AlGaN layers on sapphire. Appl. Phys. Lett. 81, 604–606 (2002).

    ADS  Google Scholar 

  39. Chitnis, A. et al. Submilliwatt operation of AlInGaN based multifinger-design 315 nm light emitting diode (LED) over sapphire substrate. Jpn J. Appl. Phys. 41, L320–L322 (2002).

    ADS  Google Scholar 

  40. Khan, M. A., Shatalov, M., Maruska, H. P., Wang, H. M. & Kuokstis, E. III–nitride UV devices. Jpn J. Appl. Phys. 44, 7191–7206 (2005).

    ADS  Google Scholar 

  41. Guo, X. & Schubert, E. F. Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates. Appl. Phys. Lett. 78, 3337–3339 (2001).

    ADS  Google Scholar 

  42. Guo, X. & Schubert, E. F. Current crowding in GaN/InGaN light emitting diodes on insulating substrates. J. Appl. Phys. 90, 4191–4195 (2001).

    ADS  Google Scholar 

  43. Adivarahan, V. et al. High-power deep ultraviolet light-emitting diodes based on a micro-pixel design. Appl. Phys. Lett. 85, 1838–1840 (2004).

    ADS  Google Scholar 

  44. Mair, R. A. et al. Optical properties of GaN/AlGaN multiple quantum well microdisks. Appl. Phys. Lett. 71, 2898–2900 (1997).

    ADS  Google Scholar 

  45. Jin, S. X., Li, J., Li, J. Z., Lin, J. Y. & Jiang, H. X. GaN microdisk light emitting diodes. Appl. Phys. Lett. 76, 631–633 (2000).

    ADS  Google Scholar 

  46. Jeon, C. W., Gu. E. & Dawson, M. D. Mask-free photolithographic exposure using a matrix-addressable micropixellated AlInGaN ultraviolet light-emitting diode. Appl. Phys. Lett. 86, 221105 (2005).

    ADS  Google Scholar 

  47. Boroditsky, M. et al. Light extraction from optically pumped light-emitting diode by thin-slab photonic crystals. Appl. Phys. Lett. 75, 1036–1038 (1999).

    ADS  Google Scholar 

  48. Oder, T. N., Shakya, J., Lin, J. Y. & Jiang, H. X. III-nitride photonic crystals. Appl. Phys. Lett. 83, 1231–1233 (2003).

    ADS  Google Scholar 

  49. Oder, T. N., Kim, K. H., Lin, J. Y. & Jiang, H. X. III-nitride blue and ultraviolet photonic crystal light emitting diodes. Appl. Phys. Lett. 84, 466–468 (2004).

    ADS  Google Scholar 

  50. Chitnis, A. et al. Self-heating effects at high pump currents in deep ultraviolet light-emitting diodes at 324 nm. Appl. Phys. Lett. 81, 3491–3493 (2002).

    ADS  Google Scholar 

  51. Gaska, R. et al. Deep-ultraviolet emission of AlGaN/AlN quantum wells on bulk AlN. Appl. Phys. Lett. 81, 4658–4660 (2002).

    ADS  Google Scholar 

  52. Rojo, J. C. et al. Growth and characterization of epitaxial layers on aluminum nitride substrates prepared from bulk, single crystals. J. Crystal Growth 240, 508–512 (2002).

    ADS  Google Scholar 

  53. Hu, X. et al. AlGaN/GaN heterostructure field-effect transistors on single-crystal bulk AlN. Appl. Phys. Lett. 82, 1299–1301 (2003).

    ADS  Google Scholar 

  54. Nishida, T., Makimoto, T., Saito, H. & Ban, T. AlGaN-based ultraviolet light-emitting diodes grown on bulk AlN substrates. Appl. Phys. Lett. 84, 1002–1004 (2004).

    ADS  Google Scholar 

  55. Silveira, E. et al. Near-bandedge cathodoluminescence of an AlN homoepitaxial film. Appl. Phys.Lett. 84, 3501–3503 (2004).

    ADS  Google Scholar 

  56. Nam, O. H., Bremser, M. D., Ward, B. L., Nemanich, R. J. & Davis, R. F. Growth of GaN and Al0.2Ga0.8N on patterened substrates via organometallic vapor phase epitaxy. Jpn J. Appl. Phys. 36, L532–L535 (1997).

    Google Scholar 

  57. Katona, T. M. et al. Maskless lateral epitaxial overgrowth of high-aluminum-content AlxGa1–xN. Appl. Phys. Lett, 84, 5025–5027 (2004).

    ADS  Google Scholar 

  58. Wang, T., Bai, J., Parbrook, P. J. & Cullis, A. G. Air-bridged lateral growth of an Al0.98Ga0.02N layer by introduction of porosity in an AlN buffer. Appl. Phys. Lett. 87, 151906 (2005).

    ADS  Google Scholar 

  59. Imura, M. et al. Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers. J. Crystal Growth 298, 257–260 (2007).

    ADS  Google Scholar 

  60. Adivarahan, V. et al. Robust 290 nm emission light emitting diodes over pulsed laterally overgrown AlN. Jpn J. Appl. Phys. 46, L877–L879 (2007).

    Google Scholar 

  61. Adivarahan, V. et al. Robust 285 nm deep UV light emitting diodes over metal organic hydride vapor phase epitaxially grown AlN/sapphire templates. Jpn J. Appl. Phys. 46, L537–L539 (2007).

    Google Scholar 

  62. Kozodoy, P., Hansen, M., DenBaars, S. P. & Mishra, U. K. Enhanced Mg doping efficiency in Al0.2Ga0.8N/GaN superlattices. Appl. Phys. Lett. 74, 3681–3684 (1999).

    ADS  Google Scholar 

  63. Nakarmi, M. L., Kim, K. H., Li, J., Lin, J. Y. & Jiang, H. X. Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping. Appl. Phys. Lett. 82, 3041–3043 (2003).

    ADS  Google Scholar 

  64. Shur, M. S. et al. Accumulation hole layer in p-GaN/AlGaN heterostructures. Appl. Phys. Lett. 76, 3061–3063 (2000).

    ADS  Google Scholar 

  65. Craven, M. D., Lim, S. H., Wu, F., Speck, J. & DenBaars, S. P. Threading dislocation reduction via laterally overgrown nonpolar (112¯0) a-plane GaN. Appl. Phys. Lett. 81, 1201–1203 (2002).

    ADS  Google Scholar 

  66. Chen, C. et al. A new selective area lateral epitaxy approach for depositing a-plane GaN over r-plane sapphire. Jpn J. Appl. Phys. 42, L818–L820 (2003).

    ADS  Google Scholar 

  67. Chen, C. et al. Optically pumped lasing at 353 nm using non-polar a-plane AlGaN multiple quantum wells over r-plane sapphire. Jpn J. Appl. Phys. 43, L1099–L1102 (2004).

    ADS  Google Scholar 

  68. Chen, C. et al. Ultraviolet light emitting diodes using non-polar a-plane GaN-AlGaN multiple quantum wells. Jpn J. Appl. Phys. 42, L1039–L1040 (2003).

    ADS  Google Scholar 

  69. Adivarahan, V. et al. Planar Schottky diodes on high quality A-plane GaN. Jpn J. Appl. Phys. 42, L1136–L1138 (2003).

    ADS  Google Scholar 

  70. Schmidt, M. et al. High power and high external efficiency m-plane InGaN light emitting diodes. Jpn J. Appl. Phys. 46, L126–L128 (2007).

    Google Scholar 

  71. Feezell, D. F., DenBaars, S. P. & Nakamura, S. AlGaN-cladding-free nonpolar InGaN/GaN laser diodes. Jpn J. Appl. Phy. 46, L284–L286 (2007).

    Google Scholar 

  72. Okamoto, K. et al. Continuous-wave operation of m-plane InGaN multiple quantum well laser diodes. Jpn J. Appl. Phys. 46, L187–L189 (2007).

    Google Scholar 

  73. Nakamura, S., Harada, Y. & Seno, M. Novel metalorganic chemical vapor deposition system for GaN growth. Appl. Phys. Lett. 58, 2021–2023 (1991).

    ADS  Google Scholar 

  74. Ohba, Y. & Hatana, A. Growth of high-quality AlN and AlN/GaN/AlN heterostructure on sapphire substrate. Jpn J. Appl. Phys. 35, L1013–L1015 (1996).

    ADS  Google Scholar 

  75. Ohba, Y., Sato, R. & Kaneko, K. Two-dimensional growth of AlN and GaN on lattice-relaxed Al0.4Ga0.6N buffer layers prepared with high-temperature-grown AlN buffer on sapphire substrates and fabrication of multiple-quantum-well structures. Jpn J. Appl. Phys. 40, L1293–L1296 (2001).

    ADS  Google Scholar 

  76. Nishida, T., Saito, H. & Kobayashi, N. Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN. Appl. Phys. Lett. 79, 711–712 (2001).

    ADS  Google Scholar 

  77. Adivarahan, V. et al. Ultraviolet light-emitting diodes at 340 nm using quaternary AlInGaN multiple quantum wells. Appl. Phys. Lett. 79, 4240–4242 (2001).

    ADS  Google Scholar 

  78. Adivarahan, V. et al. AlGaN single-quantum-well light-emitting diodes with emission at 285 nm. Appl. Phys. Lett. 81, 3666–3668 (2002).

    ADS  Google Scholar 

  79. Yasan, A. et al. Top-emission ultraviolet light-emitting diodes with peak emission at 280 nm. Appl. Phys. Lett. 81, 801–802 (2002).

    ADS  Google Scholar 

  80. Adivarahan, V. et al. High-efficiency 269 nm emission deep ultraviolet light-emitting diodes. Appl. Phys. Lett. 84, 4762–4764 (2004).

    ADS  Google Scholar 

  81. Wu, S. et al. Micro-pixel design milliwatt power 254 nm emission light emitting diodes. Jpn J. Appl. Phys. 43, L1035–L1037 (2004).

    ADS  Google Scholar 

  82. Adivarahan, V. et al. 250 nm AlGaN light-emitting diodes. Appl. Phys. Lett. 85, 2175–2177 (2004).

    ADS  Google Scholar 

  83. Taniyasu, Y., Kasu, M. & and Makimoto, T. An aluminium nitride light-emitting diode with a wavelength of 210 nanometres. Nature 441, 325–328 (2006).

    ADS  Google Scholar 

  84. Shatalov, M., Gaevski, M., Adivarahan, V. & Khan, A. Room-temperature stimulated emission from AlN at 214 nm. Jpn J. Appl. Phys. 45, L1286–L1288 (2006).

    ADS  Google Scholar 

  85. Sun, W. H. et al. Fine structure of AlN/AlGaN superlattice grown by pulsed atomic-layer epitaxy for dislocation filtering. Appl. Phys. Lett. 87, 211915 (2005).

    ADS  Google Scholar 

  86. Zhang, J. P. Pulsed atomic-layer epitaxy of ultrahigh-quality AlxGa1–xN structures for deep ultraviolet emissions below 230 nm. Appl. Phys. Lett. 81, 4392–4394 (2002).

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, A., Balakrishnan, K. & Katona, T. Ultraviolet light-emitting diodes based on group three nitrides. Nature Photon 2, 77–84 (2008). https://doi.org/10.1038/nphoton.2007.293

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing