Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Ceramic laser materials

The word 'ceramics' is derived from the Greek keramos, meaning pottery and porcelain. The opaque and translucent cement and clay often used in tableware are not appropriate for optical applications because of the high content of optical scattering sources, that is, defects. Recently, scientists have shown that by eliminating the defects, a new, refined ceramic material — polycrystalline ceramic — can be produced. This advanced ceramic material offers practical laser generation and is anticipated to be a highly attractive alternative to conventional glass and single-crystal laser technologies in the future. Here we review the history of the development of ceramic lasers, the principle of laser generation based on this material, some typical results achieved with ceramic lasers so far, and discuss the potential future outlook for the field.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The microstructure of conventional and advanced transparent ceramics.
Figure 2: Laser oscillation using optical-grade Nd:YAG ceramics.

© 2006 ANNUAL REVIEWS © 1995 ACERS

Figure 3: Large-scale Nd:YAG ceramics developed by Konoshima Chemical.

© 2008 OSA

Figure 4: Composite laser elements fabricated by current ceramic technology.
Figure 5: Gradient-distribution ceramic laser composite.

© 2007 OSA

Figure 6: The growth of SSCG single crystal and its laser performance.

© 2007 OSA

References

  1. Steen, W. M. & Watkins, K. Laser Materials Processing 3rd edn (Springer, Heidelberg, 2003).

    Book  Google Scholar 

  2. Ion, J. C. Laser Processing in Engineering Materials: Principles, Procedure and Industrial Application (Butterworth-Heinemann, Oxford, 2005).

    Google Scholar 

  3. Shaw, A., Groza, J. R., Shackelford, J. F., Lavernia, E. J. & Powers, M. T. Materials Processing Handbook (CRC, Boca Raton, 2007).

    Google Scholar 

  4. Kannatey-Asibu, E. Principles of Laser Materials Processing (Wiley, 2008).

    Google Scholar 

  5. Ready, J. F. & Farson, D. F. LIA Handbook of Laser Materials Processing (Magnolia, Berlin, 2001).

    Google Scholar 

  6. Dahotre, N. B. & Harimkar, S. P. Fabrication and Machining of Materials (Springer, Berlin, 2007).

    Google Scholar 

  7. Lubatchowski, H. Lasers in Medicine: Laser-Tissue Interactions and Applications (Wiley, 2007).

    Google Scholar 

  8. Vij, D. R. & Mahesh, K. Medical Applications of Lasers (Springer, Dordrecht, 2002).

    Book  Google Scholar 

  9. Berlien, H. P. & Muler, G. J. Applied Laser Medicine (Springer, Berlin, Heidberg, New York, 2003).

    Book  Google Scholar 

  10. Biomedical Photonics Handbook (ed. Tuan, V.-D.) (CRC, Boca Raton, 2003).

  11. Parker, J. N. & Parker, P. M. Laser Surgery: A Medical Dictionary, Bibliography and Annotated Research Guide to Internet References (ICON Health, 2003).

    Google Scholar 

  12. Niemz, M. H. Laser-Tissue Interactions (Springer, Berlin, Heidelberg, 2003).

    MATH  Google Scholar 

  13. Waynant, R. W. Lasers in Medicine (CRC, Boca Raton, 2001).

    Book  Google Scholar 

  14. Slade, S. G., Baker, R. N. & Brockman, D. K. The Complete Book of Laser Eye Surgery (Bantam Books, New York, 2002).

    Google Scholar 

  15. Frankhauser, F. & Kwasniewska, S. Lasers in Ophthalmology (Kugler, The Hague, 2003).

    Google Scholar 

  16. Deter, C. & Kraenert, J. High-resolution scanning laser projection display with diode-pumped solid-state lasers. Proc. SPIE 3954, 175–184 (2000).

    Article  ADS  Google Scholar 

  17. Xu, X. P. et al. High-power red-green-blue laser light source based on intermittent oscillating dual-wavelength Nd:YAG laser with a cascaded LiTaO3 superlattice. Opt. Lett. 33, 408–410 (2008).

    Article  ADS  Google Scholar 

  18. Hering, P., Lay, J. P. & Stry, S. Laser in Environment and Life Sciences (Springer, Heidelberg, 2004).

    Book  Google Scholar 

  19. Fuji, T. & Fukuchi, T. Laser Remote Sensing (CRC, 2005).

    Google Scholar 

  20. Kay, M. H. Fast track to fusion energy. Nature 412, 775–776 (2001).

    Article  ADS  Google Scholar 

  21. Nakai, S. & Mima, K. Laser driven inertial fusion energy: Present and prospective. Rep. Prog. Phys. 67, 321–349 (2004).

    Article  ADS  Google Scholar 

  22. Azteni, S. & Meyer- ter-Vehn, J. The Physics of Inertial Fusion: Beam-Plasma Interaction, Hydrodynamics, Hot Dense Matter (Oxford Univ. Press, Oxford, 2004).

    Google Scholar 

  23. Maiman, T. H. Simulated optical radiation in ruby. Nature 187, 493–94 (1960).

    Article  ADS  Google Scholar 

  24. Maiman, T. H. Optical and microwave-optical experiments in ruby. Phys. Rev. Lett. 4, 546–566 (1960).

    Article  ADS  Google Scholar 

  25. Geusic, E., Marcos, H. M. & van Uitert, L. G. Laser oscillation in Nd doped yttrium aluminum, yttrium gallium and gadolinium garnets. Appl. Phys. Lett. 4, 182–184 (1964).

    Article  ADS  Google Scholar 

  26. Molton, P. F. Spectroscopic and laser characteristics of Ti:Al2O3 . J. Opt. Soc. Am. B 3, 125–132 (1986).

    Article  ADS  Google Scholar 

  27. Huber, G., Duczynski, E. W. & Petermann, K. Laser pumping of Ho-, Tm-, Er-doped garnet lasers at room temperature. IEEE J. Quant. Electron. 24, 920–923 (1988).

    Article  ADS  Google Scholar 

  28. Shiraki, K. Solid state laser material — Optical homogeneity and crystal growth of YAG. [in Japanese] Oyo Butsuri 38, 177–182 (1969).

    Google Scholar 

  29. Sekino, T. & Sogabe, Y. Progress in the YAG crystal growth technique for solid state lasers. [in Japanese] Rev. Laser Eng. 21, 827–831 (1993).

    Article  Google Scholar 

  30. Collard, J., Duncan, R. C., Pressley, R. J., Sterzer, F. & Walsh, T. Interim engineering Rep. 3 — Solid State Laser Exportations. (Defense Technical Information Center, USA, 1964).

    Google Scholar 

  31. Hatch, S. E., Parsons, W. F. & Weagley, R. J. Hot pressed polycrystalline CaF2:Dy2+ laser. Appl. Phys. Lett. 5, 153–154 (1964).

    Article  ADS  Google Scholar 

  32. Greskovich, C. & Wood, K. N. Fabrication of transparent ThO2-doped Y2O3 . Am. Ceram. Soc. Bull. 52, 473–478 (1973).

    Google Scholar 

  33. Greskovich, C. & Chernoch, J. P. Polycrystalline ceramic laser. J. Appl. Phys. 44, 4599–4606 (1973).

    Article  ADS  Google Scholar 

  34. Greskovich, C. & Chernoch, J. P. Improved polycrystalline ceramic laser. J. Appl. Phys. 45, 4495–4502 (1974).

    Article  ADS  Google Scholar 

  35. de With, G. & van Dijk, H. J. A. Translucent Y3Al5O12 ceramic. Mater. Res. Bull. 19, 1669–1674 (1984).

    Article  Google Scholar 

  36. Mudler, C. A. & de With, G. Translucent Y3Al5O12 ceramics: Electron microscopy characterization. Solid State Ionics 16, 81–86 (1985).

    Article  Google Scholar 

  37. Sekita, M., Haneda, H., Yanagitani, T. & Shirasaki, S. Induced emission cross section of Nd: YAG ceramics. Jpn J. Appl. Phys. 67, 453–458 (1990).

    Article  ADS  Google Scholar 

  38. Ikesue, A. Polycrystalline transparent ceramics for laser application. Japanese patent 3,463,941 (1992).

  39. Ikesue, A., Kinoshita, T., Kamata, K. & Yoshida, K. Fabrication and optical properties of high-performance polycrystalline Nd:YAG ceramics for solid-state lasers. J. Am. Ceram. Soc. 78, 1033–1040 (1995).

    Article  ADS  Google Scholar 

  40. Lu, J. et al. High-power Nd:Y3Al5O12 ceramic laser. Jpn J. Appl. Phys. 39, L1048–L1050 (2000).

    Article  ADS  Google Scholar 

  41. Zhang, J., An, L. Q., Liu, M., Wang, S. W. & Chen, L. D. in Proc. 3rd Laser Ceram. Symp. Paris, France, IO-S-1 (2007).

    Google Scholar 

  42. Dou, C. G., Yang, O. H. & Xu, J. in Proc. 3rd Laser Ceram. Symp., Paris, France, O-C-14 (2007).

    Google Scholar 

  43. Lee, S. H., Kochawattana, S., Messing, G. L. & Dumm, J. Solid-state reactive sintering of transparent polycrystalline Nd:YAG ceramics. J. Am. Ceram. Soc. 89, 1945–1950 (2006).

    Article  Google Scholar 

  44. Prasad, N. S. et al. Recent progress in the development of neodymium-doped ceramic yttria. IEEE J. Sel. Top. Quant. Electron. 13, 831–837 (2007).

    Article  ADS  Google Scholar 

  45. Hulie, J. C., Gentilman, R. & Stefanik, T. S. Domestically produced ceramic YAG laser gain material for high power SSLs. Laser Source Technology for Defense and Security III 6552, 65520B (2007).

    Google Scholar 

  46. Bravo, A. C., Longuest, L., Autissier, D. & Boumard, J. F. Influence of the powder preparation on the sintering of Yb-doped Sc2O3 transparent ceramics. Opt. Mater. advance online publication, 14 July 2008 (doi: 10,1016/j.optmat.2008.05.004).

  47. Lupei, V. Ceramic laser materials and the prospect for high power lasers. Opt. Mater. advance online publication, 5 June 2008 (doi: 10,1016/j.opt.mat.2008.04.007).

  48. Ivanov, M. G., Kopilov, Y. L., Osipov, V. V., Solomonov, V. I. & Chrustrov, V. R. in Proc. 3rd Laser Ceram. Symp., Paris, France O-S-3 (2007).

    Google Scholar 

  49. Coble, R. L. Sintering crystalline solid II. Experimental test of diffusion models in powder compacts. J. Appl. Phys. 32, 793–799 (1961).

    Article  ADS  Google Scholar 

  50. Coble, R. L. Preparation of transparent ceramic Al2O3 . Am. Ceram. Soc. Bull. 38, 507 (1959).

    Google Scholar 

  51. Takei, F., Ushijima, J. & Sakurai, M. Growth of single crystals for laser application. [in Japanese] Toshiba Review 24, 1–9 (1969).

    Google Scholar 

  52. Cckayne, B., Ahesswas, M. & Gasson, B. Faceting and optical perfection in Czochralski grown garnets and ruby. J. Mater. Sci. 4, 450–456 (1969).

    Article  ADS  Google Scholar 

  53. Monchamp, R. R. The distribution coefficient of neodymium and lutetium in Czochralski grown Y3Al5O12 . J. Cryst. Growth 5, 239–242 (1969).

    Article  Google Scholar 

  54. Shoji, I., Kurimura, S., Sato, Y., Taira, T. & Ikesue, A. Optical properties and laser characteristics of highly Nd-doped YAG ceramics. Appl. Phys. Lett. 77, 939–941 (2000).

    Article  ADS  Google Scholar 

  55. Taira, T., Ikesue, A. & Yoshida, K. Diode-pumped Nd:YAG ceramics lasers. OSA Trends in Opt. Photon. Ser. 19, 430–432 (1998).

    Google Scholar 

  56. Sato, Y., Taira, T. & Ikesue, A. Spectral parameters of Nd3+-ion in the polycrystalline solid-solution composed of Y3Al5O12 and Y3Sc2Al3O12 . Jpn J. Appl. Phys. 42, 5071–5074 (2003).

    Article  ADS  Google Scholar 

  57. Saikawa, J., Sato, Y., Taira, T. & Ikesue, A. Absorption, emission spectrum properties, and efficient laser performances of Yb:Y3ScAl4O12 ceramics. Appl. Phys. Lett. 85, 1898–1900 (2004).

    Article  ADS  Google Scholar 

  58. Lu, J. et al. Neodymium doped yttrium aluminum garnet (Y3Al5O12) nanocrystalline ceramics — a new generation of solid state and optical materials. J. Alloy. Compounds 341, 220–225 (2002).

    Article  Google Scholar 

  59. Yamamoto, R. M. et al. in Proc. Adv. Solid State Photon., Nara, Japan, WC5 (2008).

    Google Scholar 

  60. Ikesue, A., Kamata, K. & Yoshida, K. Synthesis of transparent Nd-doped HfO2-Y2O3 ceramics using HIP. J. Am. Ceram. Soc. 79, 359–364 (1996).

    Article  Google Scholar 

  61. Ter-Gabrielyan, N., Merkel, L. D., Newburgh, G. A., Dubinskii, M. & Ikesue, A. in Proc. Adv. Solid State Photon., Nara, Japan, TuB4 (2008).

    Google Scholar 

  62. Yoda, T., Miyamoto, S., Tsuboya, H., Ikesue, A. & Yoshida, K. in CLEO 2004, San Francisco, Poster Section-III, CThT59 (2006).

    Google Scholar 

  63. Tokurakawa, M. et al. Diode-pumped mode-locked Yb3+:Lu2O3 ceramic laser. Opt. Express 14, 12832–12838 (2006).

    Article  ADS  Google Scholar 

  64. Tokurakawa, M. et al. in Proc. 3rd Laser Ceram. Symp., Paris, France, O-L-2 (2007).

    Google Scholar 

  65. Ikesue, A. & Aung, Y. L. Synthesis and performance of advanced ceramic lasers. J. Am. Ceram. Soc. 89, 1936–1944 (2006).

    Article  Google Scholar 

  66. Ikesue, A., Aung, Y. L., Yoda, T., Nakayama, S. & Kamimura, T. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Opt. Mater. 29, 1289–1294 (2007).

    Article  ADS  Google Scholar 

  67. Kamimura, T., Okamoto, T., Aung, Y. L. & Ikesue, A. in CLEO 2007, Baltimore, Maryland, CThT6 (2007).

    Google Scholar 

  68. Ikesue, A., Yoda, T., Nakayama, S., Kamimura, T. & Yoshida, K. Fabrication and laser performance of polycrystal and single crystal Nd:YAG by advanced ceramic processing. Ann. Meeting Laser Soc. Japan, Keihanna, Japan, 21p-I-12 (2005).

  69. Matsuzawa, S. Fabrication method of Mn-Zn ferrite single crystal by solid-solid reaction. [in Japanese] Fine Cer. report 9 503–07 (1991).

  70. Imaeda, M. & Matsuzawa, S. in Proc. 1st Japan Int. SAMPE Symp. 419–424 (1989).

    Google Scholar 

  71. Ikesue, A. et al. Progress in ceramic lasers. Ann. Rev. Mater. Res. 36, 397–429 (2006).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank V. Lupei, R.L. Byer, S. Nakayama, Y. Iwamoto, T. Kamimura, T. Taira and T. Yamamoto for their evaluations of ceramic lasers. They would also like to thank the Air Force Office of Scientific Research (AFOSR) and the Asian Office of Aerospace Research and Development (AOARD) for their support of the development of high-power-density lasers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akio Ikesue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ikesue, A., Aung, Y. Ceramic laser materials. Nature Photon 2, 721–727 (2008). https://doi.org/10.1038/nphoton.2008.243

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2008.243

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing