Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Embedded cavities and waveguides in three-dimensional silicon photonic crystals

Abstract

To fulfil the promise that complete-photonic-bandgap materials hold for optoelectronics applications, the incorporation of three-dimensionally engineered defects must be realized. Previous attempts to create and characterize such defects were limited because of fabrication challenges. Here we report the optical and structural characterization of complex submicrometre features of unprecedented quality within silicon inverse opals. High-resolution three-dimensional features are first formed within a silica colloidal crystal by means of two-photon polymerization, followed by a high-index replication step and removal of the opal template to yield embedded defects in three-dimensional silicon photonic crystals. We demonstrate the coupling of bandgap frequencies to resonant modes in planar optical cavities and the first waveguiding of near-infrared light around sharp bends in a complete-photonic-bandgap material.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vertical cross-sections of air features embedded within silicon–air inverse opals.
Figure 2: Micrographs of features defined in a PhC.
Figure 3: Overview of the fabrication scheme used to embed air features in a silicon–air inverse opal.
Figure 4: Optical spectra from a planar cavity embedded in a PhC.
Figure 5: Straight vertical waveguides.
Figure 6: Double-bend waveguides embedded in a 3D PBG material.

Similar content being viewed by others

References

  1. Bykov, V. P. Spontaneous emission from a medium with a band spectrum. Sov. J. Quant. Electron. 4, 861–871 (1974).

    Article  ADS  Google Scholar 

  2. John, S. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486–2489 (1987).

    Article  ADS  Google Scholar 

  3. Yablonovitch, E. Inhibited spontaneous emission in solid-state physics and electronics. Phys. Rev. Lett. 58, 2059–2062 (1987).

    Article  ADS  Google Scholar 

  4. Meade, R. D. et al. Novel applications of photonic band-gap materials — low-loss bends and high Q-cavities. J. Appl. Phys. 75, 4753–4755 (1994).

    Article  ADS  Google Scholar 

  5. Fan, S. H. et al. Guided and defect modes in periodic dielectric wave-guides. J. Opt. Soc. Am. B 12, 1267–1272 (1995).

    Article  ADS  Google Scholar 

  6. Mekis, A. et al. High transmission through sharp bends in photonic crystal waveguides. Phys. Rev. Lett. 77, 3787–3790 (1996).

    Article  ADS  Google Scholar 

  7. Joannopoulos, J. D., Villeneuve, P. R. & Fan, S. Photonic crystals: Putting a new twist on light. Nature 386, 143–149 (1997).

    Article  ADS  Google Scholar 

  8. Fink, Y. et al. A dielectric omnidirectional reflector. Science 282, 1679–1682 (1998).

    Article  ADS  Google Scholar 

  9. Russell, P. Photonic crystal fibers. Science 299, 358–362 (2003).

    Article  ADS  Google Scholar 

  10. Noda, S., Tomoda, K., Yamamoto, N. & Chutinan, A. Full three-dimensional photonic bandgap crystals at near-infrared wavelengths. Science 289, 604–606 (2000).

    Article  ADS  Google Scholar 

  11. Sozuer, H. S., Haus, J. W. & Inguva, R. Photonic bands—convergence problems with the plane-wave method. Phys. Rev. B 45, 13962–13972 (1992).

    Article  ADS  Google Scholar 

  12. Braun, P. V., Rinne, S. A. & García-Santamaría, F. Introducing defects in 3D photonic crystals: State of the art. Adv. Mater. 18, 2665–2678 (2006).

    Article  Google Scholar 

  13. Jun, Y. H., Leatherdale, C. A. & Norris, D. J. Tailoring air defects in self-assembled photonic bandgap crystals. Adv. Mater. 17, 1908–1911 (2005).

    Article  Google Scholar 

  14. Lee, W. M., Pruzinsky, S. A. & Braun, P. V. Multi-photon polymerization of waveguide structures within three-dimensional photonic crystals. Adv. Mater. 14, 271–274 (2002).

    Article  Google Scholar 

  15. Pruzinsky, S. A. & Braun, P. V. Fabrication and characterization of two-photon polymerized features in colloidal crystals. Adv. Funct. Mater. 15, 1995–2004 (2005).

    Article  Google Scholar 

  16. Blanco, A. et al. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres. Nature 405, 437–440 (2000).

    Article  ADS  Google Scholar 

  17. Vlasov, Y. A., Bo, X.-Z., Sturm, J. C. & Norris, D. J. On-chip natural assembly of silicon photonic bandgap crystals. Nature 414, 289–293 (2001).

    Article  ADS  Google Scholar 

  18. Song, B. S., Noda, S., Asano, T. & Akahane, Y. Ultra-high-Q photonic double-heterostructure nanocavity. Nature Mater. 4, 207–210 (2005).

    Article  ADS  Google Scholar 

  19. Nelson E. C. & Braun, P. V. Registration and optical properties of embedded two-photon polymerized features within self-organized photonic crystals. arXiv:0710.0851v1 <http://arxiv.org/abs/0710.0851v1> (2007).

  20. Jiang, P., Bertone, J. F., Hwang, K. S. & Colvin, V. L. Single-crystal colloidal multilayers of controlled thickness. Chem. Mater. 11, 2132–2140 (1999).

    Article  Google Scholar 

  21. Chabanov, A. A., Jun, Y. & Norris, D. J. Avoiding cracks in self-assembled photonic band-gap crystals. Appl. Phys. Lett. 84, 3573–3575 (2004).

    Article  ADS  Google Scholar 

  22. García-Santamaría, F. et al. Refractive index properties of calcined silica submicrometer spheres. Langmuir 18, 1942–1944 (2002).

    Article  Google Scholar 

  23. Groner, M. D., Elam, J. W., Fabreguette, F. H. & George, S. M. Electrical characterization of thin Al2O3 films grown by atomic layer deposition on silicon and various metal substrates. Thin Solid Films 413, 186–197 (2002).

    Article  ADS  Google Scholar 

  24. Busch, K. & John, S. Photonic band gap formation in certain self-organizing systems. Phys. Rev. E 58, 3896–3908 (1998).

    Article  ADS  Google Scholar 

  25. Scrimgeour, J. et al. Three-dimensional optical lithography for photonic microstructures. Adv. Mater. 18, 1557–1560 (2006).

    Article  Google Scholar 

  26. Takada, K., Sun, H. B. & Kawata, S. Improved spatial resolution and surface roughness in photopolymerization-based laser nanowriting. Appl. Phys. Lett. 86, 071122 (2005).

    Article  ADS  Google Scholar 

  27. García-Santamaría, F., Nelson E. C. & Braun, P. V. An optical surface resonance may render photonic crystals ineffective. Phys. Rev. B 76, 075132 (2007).

    Article  ADS  Google Scholar 

  28. García-Santamaría, F. et al. Nanorobotic manipulation of microspheres for on-chip diamond architectures. Adv. Mater. 14, 1144–1147 (2002).

    Article  Google Scholar 

  29. Palacios-Lidón, E., Galisteo-López, J. F., Juárez, B. H. & López, C. Engineered planar defects embedded in opals. Adv. Mater. 16, 341–345 (2004).

    Article  Google Scholar 

  30. Tetreault, N. et al. Dielectric planar defects in colloidal photonic crystal films. Adv. Mater. 16, 346–349 (2004).

    Article  Google Scholar 

  31. Kramper, P. et al. Highly directional emission from photonic crystal waveguides of subwavelength width. Phys. Rev. Lett. 92, 113901 (2004).

    Article  ADS  Google Scholar 

  32. Frei, W. R., Tortorelli, D. A. & Johnson, H. T. Topology optimization of a photonic crystal waveguide termination to maximize directional emission. Appl. Phys. Lett. 86, 111114 (2005).

    Article  ADS  Google Scholar 

  33. Lousse, V. & Fan, S. H. Waveguides in inverted opal photonic crystals. Opt. Express 14, 866–878 (2006).

    Article  ADS  Google Scholar 

  34. Cumpston, B. H. et al. Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398, 51–54 (1999).

    Article  ADS  Google Scholar 

  35. Deubel, M. et al. Direct laser writing of three-dimensional photonic-crystal templates for telecommunications. Nature Mater. 3, 444–447 (2004).

    Article  ADS  Google Scholar 

  36. Pruzinsky, S. A. Two-Photon Polymerization of Defects in Photonic Crystals. Thesis, Univ. Illinois at Urbana-Champaign (2006).

    Google Scholar 

  37. Sechrist, Z. A. et al. Modification of opal photonic crystals using Al2O3 atomic layer deposition. Chem. Mat. 18, 3562–3570 (2006).

    Article  Google Scholar 

  38. Vlasov, Y. A., Deutsch, M. & Norris, D. J. Single-domain spectroscopy of self-assembled photonic crystals. Appl. Phys. Lett. 76, 1627–1629 (2000).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This material was based on work supported by US Army Research Office grant DAAD19-03-1-0227, National Science Foundation grant DMR 00-71645 and US Department of Energy, Division of Materials Sciences grant DE-FG02-07ER46471, through the Frederick Seitz Materials Research Laboratory at the University of Illinois at Urbana-Champaign (UIUC). This work was carried out in part in the Beckman Institute Microscopy Suite, UIUC, and the Center for Microanalysis of Materials, UIUC, which is partially supported by the US Department of Energy under grants DE-FG02-07ER46453 and DE-FG02-07ER46471. We gratefully thank L.-S. Tan (US Air Force Research Laboratory) for providing the two-photon sensitive dye, and E.C. Nelson, A.D. Stewart and E. Zettergren of our laboratory for providing some of the colloids and colloidal crystals used in this work.

Author information

Authors and Affiliations

Authors

Contributions

S.A.R. carried out the TPP, FIB, SEM, confocal and IR microscopy. F.G.S. carried out the ALD, CVD and bandgap calculations. S.A.R. and F.G.S. both performed HF etching, spectroscopy, RIE, and grew colloidal crystals. All authors conceived and designed the project, participated in discussions about the research and wrote the manuscript.

Corresponding author

Correspondence to Paul V. Braun.

Supplementary information

Supplementary Information

Supplementary information: figures S1-S9 and supplementary references (PDF 1118 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rinne, S., García-Santamaría, F. & Braun, P. Embedded cavities and waveguides in three-dimensional silicon photonic crystals. Nature Photon 2, 52–56 (2008). https://doi.org/10.1038/nphoton.2007.252

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphoton.2007.252

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing